
Efficient move evaluation and neighborhood
exploration for integrated order picking problems

Thibault Prunet, Nabil Absi, Diego Cattaruzza

Abstract

Order Picking (OP) is widely considered as the most resource-intensive activity
in warehousing logistics. The optimization of OP planning problems has attracted
substantial attention from the literature, and recent studies highlighted the im-
portance of integrating several levels of decisions for OP performances. While the
mathematical programming literature on the topic has seen important advances in
the recent years by exploiting problem-specific knowledge on the warehouse struc-
ture, the metaheuristic literature does not fully exploit this structure to propose
efficient neighborhoods. In this paper, we contribute at addressing this research
gap by introducing generic move evaluation and neighborhood exploration routines
for a broad class of integrated OP problems. First, we propose a 2-step construc-
tive heuristic for the Picker Routing Problem (PRP), coined the Aisle First Cross
Second (AFCS) heuristic. The AFCS heuristic runs in linear time of the size of
the instance, and provides upper and lower bounds for the problem with a proven
approximation ratio. Then, we introduce a neighborhood exploration scheme that
uses the bounds returned by the AFCS as surrogate objective functions to prune the
search. To highlight the potential of these methodological contributions, we develop
a generic Large Neighborhood Search (LNS) algorithm that is tested on benchmark
instances of two important problems of the OP literature with different structures:
the Joint Order Batching and Picker Routing Problem (JOBPRP) and the Storage
Location Assignment and Picker Routing Problem (SLAPRP). Numerical experi-
ments show that the LNS matches state-of-the-art methods from the literature for
both the JOBPRP and the SLAPRP.

Keywords: Neighborhood, Order Picking, Picker Routing, Storage, Order Batching, Meta-
heuristic, Large Neighborhood Search.

1 Introduction

Within warehousing activities, Order Picking (OP) is widely considered as the most
resource-intensive. In manual picker-to-parts warehouses, where human operators physi-
cally move through the facility to fulfill orders, the OP activity alone accounts for 50-75%
of the total operating costs (Frazelle 2016). While efficient solution methods have been de-
veloped for single OP planning problems, recent researches have highlighted the potential

1



gains from integrating several levels of decision (van Gils et al. 2018). In this paper, we
propose methodological contributions that apply to a broad class of OP problems, refered
as integrated OP problems, defined as any deterministic planing problem whose objective
is to minimize a function that is cumulative on the picking aisle traversals (e.g., traveled
distance, picking time). To this end, we study the Picker Routing Problem (PRP), which
involves finding a minimum length tour within a warehouse, as the main building block
to evaluate the cost of solutions for integrated problems. We apply our methodology to
two important problems with distinct structures:

• The Joint Order Batching and Picker Routing Problem (JOBPRP) which focuses
on consolidating customer orders into batches retrieved via a single route.

• The Storage Location Assignment and Picker Routing Problem (SLAPRP) which
aims at deciding the locations of the different Stock Keeping Units (SKU) within
the warehouse while also determining the picking routes to retrieve orders.

The OP literature uses two different modeling paradigms to design efficient algorithms.
The most straightforward option, commonly found in the literature, models a picking
route as a tour between visited locations. In this paradigm, the elementary modeling
unit is the visit to a given location, and its position within a route. The advantage of
this approach lies in the prolific literature on routing problems, which academics can
rely on. The second option involves modeling a picking route as a succession of aisle
traversals, thus exploiting problem-specific knowledge on the warehouse layout structure.
The seminal work of Ratliff and Rosenthal (1983) is the first to use the aisle as the
elementary modeling unit, disregarding the visit sequence in a route. They introduced
a polynomial-time Dynamic Programming (DP) algorithm for the PRP in a single-block
warehouse. It is important to emphasize that the two paradigms lead to very distinct
models and algorithms. Nowadays, most state-of-the-art mathematical-programming-
based methods use aisle modeling. For instance Pansart et al. (2018); Schiffer et al. (2022)
applied this approach to the PRP, while Briant et al. (2020); Wahlen and Gschwind (2023)
use it for the JOBPRP. In terms of metaheuristics, however, most studies do not fully
exploit problem-specific knowledge. More precisely, these studies can be classified into
three main trends:

• Using location modeling. This is particularly relevant for the JOBPRP, as it can be
modeled as a clustered VRP (Aerts et al. 2021). However, this approach overlooks
the structure of the problem.

• Using simplified routing policies. In this case the routing problem is not solved
to optimality, but with simple routing policies (Menéndez et al. 2017; Žulj et al.
2018). While allowing efficient neighborhood implementation, this approach does
not permit to fully optimize the routing.

• Recomputing the optimal route to evaluate each move (Silva et al. 2020; D’Haen
et al. 2023). Most of the time this is done with location modeling, where the PRP is
solved using generic TSP solvers. An improved approach would leverage problem-
specific knowledge in the route computation, such as using the DP algorithm by

2



(Ratliff and Rosenthal 1983; Pansart et al. 2018). The advantage of this approach
is that the algorithm always works with TSP-optimal routes, which is not the case
when using neighborhoods based on location modeling. However, the routing lit-
erature highlighted that fast move evaluation is a critical aspect of performance
improvement (Prodhon and Prins 2016). While the DP algorithm of (Ratliff and
Rosenthal 1983; Pansart et al. 2018) is very efficient, solving optimally a strongly
NP-hard problem to evaluate each move might leave room for further improvement.

To the best of the authors’ knowledge, there exists no study aiming at designing efficient
move evaluation using problem-specific knowledge for integrated OP problems. Since
neighborhoods can become quite complex for OP problems (e.g., several position inserted
in a route, or several modified routes), the efficient computation of insertion costs is far
from being a computationally easy task. In this paper, we aim at addressing this gap
by introducing an efficient neighborhood exploration scheme that relies on novel move
evaluation surrogates. To this end, we propose a constructive heuristic for the PRP, coined
the Aisle First Cross Second (AFCS) heuristic, providing upper and lower bounds on the
route cost. The value provided by this heuristic serves as a surrogate objective function
for move evaluation, a common technique in the scheduling literature when the objective
function is costly to evaluate (Crainic et al. 1993). This neighborhood exploration scheme
is embedded into a generic Large Neighborhood Search (LNS) algorithm that presents
convincing results on benchmark instances from the literature on both the JOBPRP and
SLAPRP. The contributions of the paper are as follow:

1. We introduce a 2-stage constructive heuristic that provides upper and lower bounds
for the PRP, along with computing the time-complexity and an approximation ratio.

2. We propose a second heuristic based on the DP algorithm of Ratliff and Rosenthal
(1983) to evaluate moves. This heuristic is highly efficient in computational time,
but is not guaranteed to return a solution.

3. We propose a novel move evaluation scheme based on a surrogate objective function
for integrated OP problems. A neighborhood exploration strategy is developed to
efficiently prune dominated parts of the search space.

4. We develop a generic Large Neighborhood Search (LNS) algorithm for the JOBPRP
and SLAPRP.

5. We release the open-source package PickerRouting.jl1 that provide a fast imple-
mentation and comprehensive interface to the exact and heuristic route evaluation
routines.

6. We conduct extensive computational experiments on the performance of the LNS al-
gorithm on benchmark instances from the literature on the JOBPRP and SLAPRP.

1https://github.com/prunett/PickerRouting.jl (under development)

3

https://github.com/prunett/PickerRouting.jl


The reminder of this paper is organized as follows. Section 2 reviews the relevant liter-
ature. Section 3 defines the problems. Section 4 introduces the aisle first cross second
heuristic for the PRP, as well as upper and lower bounds for the problem. Section 5 pro-
poses the critical heuristic for move evaluation and an efficient neighborhood exploration
scheme. Section 6 presents the LNS algorithm. Section 7 details numerical experiments.
Finally, Section 8 concludes the work.

2 Related literature

The literature on Order Picking is extensive, and providing an exhaustive review is out
of scope of this study. Interested readers are referred to de Koster et al. (2007); van Gils
et al. (2018); Boysen et al. (2019); Masae et al. (2020). In this section we exclusively
present studies directly related to the present work.

The PRP. The seminal work of Ratliff and Rosenthal (1983) first studied the PRP in
a single-block warehouse, and introduced an aisle-based DP model whose underlying idea
remains the cornerstone of many modern approaches. Their linear-time DP algorithm has
then been extended to two-block warehouses (Roodbergen and de Koster 2001b), and to
the general case by Pansart et al. (2018) who propose a fixed-parameter tractable algo-
rithm. Despite the efficiency of DP based approaches, even for industrial-sized instances
with side-constraints (Schiffer et al. 2022), many authors and real-life warehouses still rely
on simple rule-based heuristics coined routing policies. Examples of such routing policies
include S-shape, return, midpoint, largest gap or combined, detailed in Roodbergen and
de Koster (2001a). Some scholars advocate for heuristic routing policies due the argument
that optimal routes can be confusing and error-prone for pickers in practical situations
(Petersen and Schmenner 1999), although this claim has been challenged by behavioral
factor studies (Elbert et al. 2017). While DP-based exact algorithms solve very efficiently
the problem, the PRP has recently been proven NP-hard in the strong sense (Prunet et al.
2025), providing a rationale for the use of heuristics, mainly for time-critical applications
such as move evaluations in metaheuristic frameworks.

Integrated OP problems. Recent review studies on OP advocate for the importance
of integrated problem solving for operational performance improvements (van Gils et al.
2018; Boysen et al. 2019). This stream of research has experienced high activy in recent
years, leading to the emergence of novel problems to deal with the challenges faced by
modern e-commerce warehouses, such as the JOBPRP and SLAPRP whose literature
are analyzed below. Other interesting applications include the PRP with scattered stor-
age (Weidinger 2018), where SKUs are stored in multiple locations so that the choice of
location is optimized alongside routing. (van Gils et al. 2019; Briant et al. 2023) con-
sider order due dates in the JOBPRP, optimizing sequencing decisions while processing
batches. Another trend integrates OP problems with vehicle routing decisions to improve
the overall supply chain efficiency: Moons et al. (2019) jointly optimize vehicle and picker
routing, and D’Haen et al. (2023) further extends the integration to batching.

4



The JOBPRP. Order batching is an important leverage for OP performance that is
implemented in real-life warehouses for decades (Boysen et al. 2019), generating extensive
studies in the literature. Most early studies focused on constructive heuristics inspired by
the vehicle routing literature, such as seed or savings algorithms, and routing policies for
performing the routing (de Koster et al. 1999). Recent works tend to tackle the problem
with metaheuristics, but still use heuristic routing policies instead of optimal routing to
evaluate the picking distance in most cases (Henn and Wäscher 2012; Menéndez et al.
2017). In the context of JOBPRP, the picking distance within each route is optimized
jointly with batching. The JOBPRP has been first investigated by Won and Olafsson
(2005) with a saving-based heuristic for batching, and a 2-opt heuristic for routing. The
problem has mainly been tackled by metaheuristics such as Tabu search (Kulak et al.
2012), particle swarm optimization (Cheng et al. 2015), iterated local search (Scholz and
Wäscher 2017) and Variable Neighborhood Search (VNS) (Aerts et al. 2021). Mathemat-
ical programming-based methods gained popularity since the work of Valle et al. (2017)
that first proposed an exact method. Briant et al. (2020) and Wahlen and Gschwind
(2023) propose efficient heuristic Branch-Cut-and-Price (BPC) algorithms that leverage
the problem structure. To the best of the authors knowledge, Wahlen and Gschwind
(2023) currently stands as the state-of-the-art solution method for the JOBPRP.

The SLAPRP. The SLAPRP is strongly NP-hard, even within a single-aisle ware-
house context (Boysen and Stephan 2013), and is especially challenging due to its high
combinatorics (Prunet et al. 2024). The integration of storage and routing decisions has
received a limited attention from the research community, with even fewer works study-
ing it with an exact optimization of the picking distance. In terms of exact methods,
Boysen and Stephan (2013) propose a DP-based algorithm for a single-aisle warehouse,
while Silva et al. (2020) introduce a cubic formulation with very limited computational
efficiency, and Prunet et al. (2024) propose both a compact formulation and a Branch-
Cut-and-Price algorithm. To the best of the authors’ knowledge, Silva et al. (2020) is the
only work proposing a metaheuristic approach to solve the problem with optimal routing.
Further contributions on the topic include Mantel et al. (2007) and Guo et al. (2021) who
solve the routing using heuristic policies.

3 Mathematical description of the PRP and inte-
grated problems

In this section we first define the layout graph representing the warehouse, then we in-
troduce the problems considered in this work, namely the PRP, the JOBPRP and the
SLAPRP. The mathematical notation used throughout this paper are summarized in Ta-
ble 1.

Layout Graph. The studied problems are defined on a conventional rectangular multi-
block layout, as illustrated in Figure 1. The layout is composed of a set K = {1, . . . , K}

5



Table 1: Mathematical notations

Sets
K Set of blocks
Ak Set of aisles of block k ∈ K
A Set of all aisles
Lki Set of locations in block k ∈ K, aisle i ∈ A
L Set of all locations
L0 = L ∪ {v0} Set of all locations including the depot
G = (L0, E) Layout graph
E Set of edges of the layout graph
P Set of intersections between the picking aisles and cross aisles
O Set of orders
Λ Set of SKUs
Λo Set of SKUs of order o ∈ O
S Set of solutions
R Set of routes
R(s) Set of routes in solution s ∈ S
N (s) Set of neighbors of s ∈ S
V Set of locations to visit for a route
At(s) Set of aisles traversed by traversal t ∈ {top, bottom, gap, 1− pass}

in partial solution s
P(s) Subset of intersections visited in partial solution s
H = (P(s),Σ) Intersection graph
H̃ Contracted intersection graph
Σ Set of edges of the intersection graph
Σ̃ Subset of edges corresponding to 1-pass and 1-cross
Parameters
K Number of blocks
A Number of aisles in one block
L Number of locations in one aisle
Dloc Distance between two consecutive locations
Daisle Distance between two consecutive aisles
Dfirst Distance between the first location of an aisle and the cross aisle
v0 The depot
qo Capacity used by order o ∈ O
Q Capacity of a picker
ct

ki Cost of visiting all locations V ∩ Lki with traversal
t ∈ {top, bottom, gap, 1− pass}

kmax Farthest visited block in a route
amax Farthest visited aisle in a route

6



of blocks, each divided into A parallel aisles. We note aki the ith aisle of block k ∈ K,
Ak = {aki, 1 ≤ i ≤ A} the set of aisles in block k ∈ K, and A = ⋃

k∈KAk the set of all
aisles. Blocks are numbered sequentially from bottom to top, while aisles from left to right.
We assume that pickers can pick indifferently from the right and left shelves when crossing
an aisle. Therefore, we can aggregate the storage spaces that are equivalent in terms of
distances (i.e., the ones facing each other), and call location such an aggregation. In this
case, each aisle aki ∈ A comprises a set Lki of L locations and we note L = ⋃

aki∈A Lki

the set of all locations. We note Dloc the distance between two consecutive locations,
Daisle the distance between two consecutive aisles, and Dfirst the distance between the
first location in an aisle and the nearest cross aisle. Additionally, we assume that the
picker starts and ends its tour at the same location v0 identified as the depot. The depot
is located in the first cross aisle, in front of aisle a1depot ∈ A1, and separated by a distance
Ddepot from the the start of aisle a1depot. Let L0 = L ∪ {v0} represent the set of locations
including the depot. The warehouse is then represented by the complete undirected graph
G = (L0, E), called the layout graph. Each edge e = (v1, v2) ∈ E is associated with a cost
ce corresponding to the shortest walking distance between locations v1 and v2. The red
diamonds in Figure 1 represent the intersections between picking aisles and cross aisles.
The intersection between cross aisle 1 ≤ k ≤ K + 1 and aisle 1 ≤ i ≤ A is noted pk

i . Let
P = {pk

i , 1 ≤ k ≤ K + 1, 1 ≤ i ≤ A} be the set of all intersections between picking aisles
and cross aisles.

The picker routing problem. In the PRP, a subset V ⊂ L0 of locations, including
the depot v0 ∈ V , needs to be visited. The problem is then defined on the subgraph of
G induced by V , and aims at finding a minimum-cost tour that visits all vertices exactly
once. We refer to a PRP solution as a route.

The Joint Order Batching and Picker Routing Problem. In the JOBPRP, batch-
ing decisions are jointly optimized with picker routing decisions. Let Λ be the set of SKUs
present in the warehouse. We are given a set O of orders, each needs that a subset Λo ⊂ Λ
of SKUs to be picked together. Each order o ∈ O is associated with a quantity qo > 0,
generally qo = |Λo|. The goal of the JOBPRP is to assign the orders to a set of batches
R of a limited capacity Q, where SKUs of a given batch are picked together by a single
route. The objective is to minimize the total traveled distance.

The Storage Location Assignment and Picker Routing Problem. In the SLAPRP,
routing decisions are jointly optimized with storage decisions. We are given a set Λ of
SKUs and a set O of orders. Each order o ∈ O is retrieved by a distinct route that needs
to pick a subset Λo ⊂ Λ of SKUs. The objective of the SLAPRP is to assign the set of
SKUs Λ to the storage locations Λ such that the total traveled distance required to pick
the orders is minimized.

7



Figure 1: Two-blocks layout. Blue dots represent locations, and red diamonds represent
dummy points corresponding to the intersection between aisles and cross aisles.

4 Aisle First Cross Second heuristic

In this section we introduce a constructive heuristic for the PRP, coined the Aisle First
Cross Second (AFCS) heuristic, and present related methodological results. We first
provide an illustrative example in Section 4.1. We formally describe the AFCS heuristic
in Section 4.2 and compute its time complexity in Section 4.3. A lower bound for the PRP
is derived from the first phase of the AFCS heuristic in Section 4.4, and an approximation
ratio is computed in Section 4.5.

4.1 Comprehensive description and illustrative example

Preliminary notions on traversals. First, let us introduce some preliminary defini-
tions and notations. As shown by Ratliff and Rosenthal (1983), there are only six possible

8



ways to traverse an aisle in an optimal solution: 1-pass, 2-pass, top, bottom, gap and
void. The 1-pass is a complete traversal of the aisle (e.g., block 1 aisle 2 in Figure 2.a),
while 2-pass represents 2 full traversals. The top is a partial traversal entering from the
top and returning (e.g., block 1 aisle 6 in Figure 2.a), and bottom a partial traversal en-
tering from the bottom and returning (e.g., block 2 aisle 3 in Figure 2.a). gap is a partial
traversal where the aisle is entered both from the top and bottom (e.g., block 1 aisle 3
in Figure 2.a), while void refers to an unvisited aisle (e.g., block 1 aisle 1 in Figure 2.a).
These are called aisle traversals and correspond to vertical paths. In this section, we dis-
regard 2-pass, considering that this possibility is substituted by two 1-pass traversals.
Similarly, a cross aisle between two consecutive aisles can be crossed either 0, 1 and 2
times. We refer to 1-cross (resp. 2-cross) for cross aisles portions traversed once (resp.
twice). These are termed cross traversals and correspond to horizontal paths. Finally, for
an intersection p ∈ P the number of paths connected to p is called the degree of p.

Descriptive example. Before providing a formal description of the AFCS heuristic, let
us introduce it through a comprehensive “pen and paper” example illustrated in Figure 2.
The AFCS is a constructive heuristic that works in two steps:

• First, the AFCS builds the aisle traversals, as depicted in Figure 2.a and Figure 2.b.
This is achieved by first computing the different traversal costs (i.e., top, bottom,
gap and 1-pass) for each aisle. Each aisle is considered independently and its
least-cost traversal, i.e., the lowest cost needed to retrieve the SKUs in the aisle,
is determined as shown in Figure 2.a. Then, some aisle traversals are modified to
ensure the future feasibility of the route, in particular aiming for an even number
of 1-pass in each block. Otherwise it will not be possible to build a valid tour,
as the picker would not be able to return to the depot. This adjustment is made
optimally, that is with the minimum cost increment. After this stage, as illustrated
in Figure 2.b, the aisle traversals are fixed and provide a lower bound on the total
cost (see Section 4.4).

• Second, the AFCS builds the cross traversals, as illustrated by Figure 2.c and Fig-
ure 2.d. This phase starts by adding the 1-cross traversals between consecutive
1-pass in each block. After this step, the solution is composed of partial subtours,
with each intersection point having an even degree, as illustrated in Figure 2.c.
Subsequently, the procedure connects all partial subtours by 2-cross traversals
to create a valid tour as a solution, as depicted in Figure 2.d. This operation is
optimally done, that is with the minimum cost increment.

4.2 Formal description of the AFCS heuristic

Let us consider an instance of the PRP induced by the set V . For an aisle aki ∈
A, we note ct

ki the cost to visit all locations V ∩ Lki of aki when using traversal t ∈
{top, bottom, gap, 1 − pass}. Since the cost of 1-pass traversals is constant, we note

9



(a) Compute best aisle traversals (b) Ensure vertical feasibility

(c) Connect 1-pass traversals (d) Connect the isolated partial subtours

Figure 2: Illustrative example of the AFCS heuristic

10



c1pass = (L− 1)Dloc + 2Dfirst. Additionally, we note kmax the farthest visited block (i.e.,
V ∩ Lkmaxi ̸= ∅ and V ∩ Lki = ∅ for all kmax < k ≤ K, and 1 ≤ i ≤ A).
The AFCS heuristic builds a valid PRP solution in two steps: first, building the aisle
traversals, and second, the cross traversals. These procedures are detailed in the following.

Step 1: Constructing the aisle traversals. This procedure determines the traversal
costs for each aisle and identifies the aisles traversed by 1-pass. The other aisles are
traversed by the minimum cost traversal among top, bottom and gap. This is performed
according to Algorithm 1.

Algorithm 1: Step 1 of the AFCS heuristic
Input: V

1: Compute ctop
ki , cbottom

ki and cgap
ki for all 1 ≤ k ≤ K and 1 ≤ i ≤ A

2: for 1 ≤ k ≤ kmax do
3: for 1 ≤ i ≤ A do
4: cki ← min({ctop

ki , c
bottom
ki , cgap

ki })
5: σk ← sorted permutation of Ak by non-increasing order of cnopass

ki

6: ckσk(1) ← c1pass

7: ckσk(2) ← c1pass

8: if (k = kmax) ∧ (2cpass + ∑
3≤i≤A ckσk(i) >

∑
1≤i≤A c

bottom
ki ) then

9: cki ← cbottom
ki for all 1 ≤ i ≤ A

10: i← 3
11: while 2c1pass ≤ ckσk(i) + ckσk(i+1) do
12: ckσk(i) ← c1pass

13: ckσk(i+1) ← c1pass

14: i← i+ 2

15: Return c

First, the procedure computes the traversal costs for each aisle (line 1). For each block
k ∈ K, all aisles are at the beginning traversed by the cheapest traversal among top,
bottom and gap, referred to as the no-pass traversal (lines 3-4). Subsequently, the aisles
are sorted in the non-increasing order of no-pass costs (line 5). Then, the two most
expensive no-cost aisles are transformed into 1-pass (lines 6-7), since there should be
at least one 1-pass traversal to reach subsequent blocks. For the last block, it is not
mandatory to add any 1-pass, in this case all the aisles of the block must be traversed
by bottom traversal, the least cost option between the two is determined in lines 8-9. In
lines 10-14, no-pass traversals are transformed into 1-pass in pairs, if and only if this
reduces the overall traversal cost of the block. Finally, all the traversal costs (and the
chosen traversal types) are returned in line 14.

Step 2: Preliminary notions. This procedure constructs the cross traversals required
to build a feasible tour. First, let us introduce some definitions. We denote s the partial

11



(a) Partial subtours after step 1 (b) Corresponding intersection graph

Figure 3: Intersection graph

solution, A1pass(s) (resp. Atop(s), Abottom(s), Agap(s)) the set of aisles traversed by 1-pass
(resp. top, bottom, gap) as determined in Step 1. Let P(s) ⊂ P be the subset of
intersections visited by the aisle traversals determined in Step 1, along with the one in
front of the depot. In other words, P(s) = {pk

i , ∀aki ∈ A1pass(s) ∪ Agap ∪ Abottom(s)} ∪
{pk+1

i ,∀aki ∈ A1pass(s) ∪ Agap(s) ∪ Atop(s)} ∪ {pk
idepot}.

We define the intersection graph as the undirected graph H = (P(s),Σ) where the set of
edges is composed of vertical edges corresponding to 1-pass, and horizontal edges corre-
sponding to cross traversals between consecutive intersections, i.e. Σ = {(pk

i , p
k+1
i ), ∀aki ∈

A1pass(s)} ∪ {(pk
i , p

k
j ) ∈ P(s), ∀1 ≤ k ≤ K + 1, 1 ≤ i < j ≤ A : pk

u /∈ P(s), ∀i < u < j} .
The subsequent steps of the heuristic consists in adding edges from Σ to the route until
it becomes feasible. Figure 3 provides an illustration.

Step 2: Constructing 1-cross traversals. First we choose the edges in Σ that will
correspond to 1-cross traversals (i.e., single horizontal traversals). For each cross aisle
1 ≤ k ≤ K + 1, this is achieved by counting the number of 1-pass traversals, both
above and below cross aisle k. An edge (pk

i , p
k
j ) ∈ Σ is traversed by a 1-cross if, and

only if, there is an odd number of 1-pass aisles connected to cross aisle k between the
left border of the warehouse and pk

i . More formally, (pk
i , p

k
j ) is traversed by 1-cross if

|{ak′i′ , ∀k′ ∈ {k − 1, k}, 1 ≤ i′ ≤ i} ∩ A1pass(s)| ≡ 1 (mod 2). We call Σ̃ the set of edges
corresponding to 1-pass and 1-cross, as illustrated in Figure 4. Note that all vertices of
the graph (P(s), Σ̃) have an even degree, and the partial route is now composed of several
cycles, disconnected from each other.

12



Figure 4: Intersection graph with edges from Σ in red. The horizontal red edges corre-
spond to 1-cross traversals, and the numbers to the amount of 1-pass at the left of each
edge. The labels of the vertices correspond to the components after contraction.

Step 2: Constructing 2-cross traversals. The objective now is to connect the
isolated partial subtours using 2-cross traversals, while minimizing the incurred cost.
If we contract H over all the edges in Σ̃, as illustrated in Figure 5, we obtain a graph
H̃ where each vertex corresponds to an isolated subtour component. The only way to
connect these components is by adding 2-cross traversals between them (i.e., choosing
edges of the contracted graph) to ensure they are all connected. Hence, this problem can
be modeled as a Minimum Spanning Tree (MST) Problem on H̃. We add to the route
the 2-cross corresponding to the edges of the MST to obtain a feasible solution.

Figure 5: Intersection graph contracted over Σ̃

4.3 Complexity of the AFCS heuristic

Let us introduce Theorem 1 on the complexity of the AFCS heuristic.

13



Theorem 1. The AFCS heuristic runs in O(|V|+KA) time complexity.

We emphasize that this result is not straightforward, as there are several operations in
the algorithm that would require an increased time complexity in a naive implementation.
Specifically, the sorting operation in Algorithm 1 would usually run in O(Alog(A)) for
each iteration, summing up to O(KAlog(A)) in total. In addition, the resolution of the
MST that would classically require a O(KAlog(KA)) time complexity if implemented
with algorithm like Prim’s algorithm using binary heaps.

Proof. The complexity of each steps is computed as follows. The first operation of Step 1
consists in computing the top, bottom, and gap traversal costs of each aisle, achievable
in O(|V|+KA) time complexity according to Heßler and Irnich (2022).
For the reminding complexity of Step 1, we refer to Algorithm 1. The procedure browses
through the blocks and, except for the sorting component (line 5), everything is either
computed in O(1) time (lines 6-9) or A time (lines 3-4 and 10-14). With this implementa-
tion, the sorting operation (line 5) would run in O(Alog(A)) time. However, the loop lines
(10-14) show that the first iterations set the aisles to 1-pass because it is cheaper, and
then do not modify them. This mechanism does not actually need all aisles to be sorted,
it is sufficient to identify 1. the aisles where 1-pass is cheaper than the other traversals,
2. Among the aisles where 1-pass is cheaper, the one with the lowest no-pass cost, and
3. Among the aisles where the no-pass cost is lower than c1pass, the one with the highest
no-pass cost. Moreover, lines (8-9) require the computation of the two cheapest no-pass
costs. These data can all be computed by scanning the list of aisles once, in O(A) time.
Therefore, Step 1 runs in O(KA) time complexity.
In terms of complexity, the first part of Step 2 builds the intersection graph, which can
be done in O(KA) operations, and iterates over the horizontal edges of H, performing
a constant number of operations in each iteration. Since H has at most KA edges, the
procedure runs in O(KA) time.
The second part of Step 2 involves two processes. First, it contracts H over a subset
of its edges, which is achievable in O(KA) time. Then it solves a MST problem, which
would classically require O(KAlog(KA)) time on a generic graph with Prim’s algorithm.
However, we will show that a problem-specific implementation of Prim’s algorithm can
run in O(KA) time complexity. This result relies on the use of a specific data structure to
implement the priority queue storing the nodes of H̃ that are not part of the tree. First,
we observe that the edges of H̃ can only take values in {1, 2, . . . , A}. Hence, we can build
a priority queue as follows. Let Qa be a linked list of all elements of priority 1 ≤ a ≤ A.
The collection (Qa)1≤a≤A can potentially contain all elements, and the creation of an
empty instance is performed in O(A) operations.
We will now show that this data structure allows performing all priority queue oper-
ations used by Prim’s algorithm in amortized constant time, namely insert-element,
decrease-key, and find-min.

• Inserting an element in the queue can naturally be done in O(1), it is sufficient to
insert it in the set corresponding to its priority.

14



• To decrease the key of an element, we only perform an insertion in the set of its
new priority, which is performed in O(1). Note that, in this case, the element is not
removed from its previous set and appears now in (at least) two sets. The obsolete
occurrence of the element will be deleted at a later stage in the algorithm.

• The find-min operation is the most crucial part of this implementation since it
should also account for obsolete elements. The operations proceeds as follows. First,
it determines amin = min{1 ≤ a ≤ A, Qa ̸= ∅} the set of minimal priority that is
non empty. This is executed by iterating through the different values and testing if
the corresponding sets are empty. For each element h ∈ H̃, the iteration that inserts
h will go up to the priority of h, which is at most the largest value of the edges
connected to h. By analyzing H, we observe that the sum of all the edge values is
at most (K + 1)A. Hence finding amin at each iteration will, in total, be performed
in O(KA) operations. Then, once amin is determined, the procedure goes through
all the elements of Qamin until it finds one that is not yet in the tree. Indeed, there
may be redundant occurrences of already inserted elements since the decrease key
operation does not delete them. These elements are deleted when encountered. We
will now prove that deleting these elements can be performed in amortized constant
time. In the worst case scenario, a node h ∈ H̃ can see its priority decrease once
for each of the edges connected to it. Therefore, h will have at most d(h)− 1 copies
that need to be deleted from Q. We observe that H possesses at most O(KA)
edges by construction, hence deleting all redundant elements from Q will take at
most O(KA) operations. This concludes the proof that the find-min operation is
executed in amortized O(1) time.

Therefore, the procedure performs at mostO(KA) iterations, each consisting of amortized
O(1) operations. Hence, Step 2 runs in O(KA) time, which concludes the proof.

4.4 Lower Bound for the PRP

In a rectangular warehouse, we refer to the Vertical cost (V-cost) of a path as the sum
of the picking aisle costs, while the Horizontal cost (H-cost) is the sum of the cross aisle
costs. In terms of distance, the V-cost (resp. H-cost) would be the sum of the distances
walked along the y-axis (resp. x-axis). In this section, we will prove that the first step of
the AFCS heuristic builds a lower bound on the H-cost, from which we can derive a lower
bound for the PRP. Additionally, we will prove that the second stage of the heuristic
builds the H-cost optimally once the aisle traversals are fixed.

Lower bound on the V-cost. First, let us introduce the following two lemmas before
stating the main proposition.

Lemma 1. A valid route in G contains an even number of 1-pass traversals in each
block.

15



Proof. A valid route starts and ends at the depot, in the front cross aisle. Therefore, each
time an aisle is completely traversed in block k ∈ K, another one must be traversed so
that the picker can reach the depot at the end.

Lemma 2. For a block 1 ≤ k < kmax, the aisle traversals of block k contain at least two
1-pass.

Proof. Since kmax must be visited, and block k is below kmax, it is clear that the aisle
traversals of k should contain at least one 1-pass. According to Lemma 1, at least two
1-pass should be used in k.

Proposition 1 (Lower bound on the V-cost in one block). For a block k ∈ K, let (cki)1≤i≤A

be the traversal costs returned by Step 1 of the AFCS heuristic. Then a lower bound on
the V-cost in block k can be computed as follows:

LBV
k =

∑
1≤i≤A

cki

Proof. We will first deal with the special case of the last block k = kmax. There exist
two possibilities: either at least one aisle is traversed by 1-pass, or none of the aisles
are traversed by 1-pass. The first possibility will be treated as the general case. If no
aisle is traversed by 1-pass, then cross aisle kmax + 1 will not be reached, meaning that
top and gap traversals are unavailable. In this case, all aisles are traversed by bottom.
In Algorithm 1, this case is represented in lines (8-9), and since the inequality in line (8)
holds, the traversals will not be modified by the while loop, hence LBV

kmax is a lower bound
on the cost in the block. In the general case, the algorithm starts by setting each aisle to
its minimum no-pass traversal (lines 3-4). Therefore, at this point, k is traversed by the
best traversals in the case of no 1-pass. According to Lemma 2, k must be traversed by
at least two 1-pass, which is done in Algorithm 1, lines (6-7). Since the two aisles set
to 1-pass are those with the highest no-pass costs, k is traversed by the best traversals
in the case of two 1-pass. According to Lemma 1, there is an even number of 1-pass in
each aisle. Since Algorithm 1 (lines 11-14) transforms aisles to 1-pass two-by-two, each
time selecting the pair with the highest no-pass costs, ensuring that the traversals of block
k remain, at each iteration, the best traversals for a given number of 1-pass. The while
loop continues until it no longer improves the solution, stopping at the number of 1-pass
that minimizes the overall aisle traversal costs within the block. Hence, Algorithm 1
builds the traversals of block k that minimize the V-cost in the block, while ensuring they
can lead to a feasible route. Therefore, LBV

k is a valid bound.

Lower bound on the H-cost. In the following, we denote amax the farthest aisle
visited, i.e., V ∩ Lkamax ̸= ∅ and V ∩ Lka = ∅ for all 1 ≤ k ≤ K and amax < a ≤ A.
Proposition 2 holds.

Proposition 2 (Lower bound on the H-cost). The following bound is valid:

LBH = 2amaxDaisle

16



Proof. This result is straightforward since the picker travels a H-cost of LBH to pick an
item in amax and return.

The bound introduced in Proposition 2 represents the cost of a round trip to the farthest
aisle. We observe that this bound can be considered as tight for the single block case, but
might be of poor quality in the worst case. It is indeed possible to create a PRP instance
where LBH is arbitrary far from the actual H-cost of an optimal route. However, it seems
challenging to find a better bound when decoupling vertical and horizontal costs.

Lower bound for the PRP. In the following we introduce Theorem 2, the main result
of this section.

Theorem 2 (Lower bound for the PRP). The cost of a solution of the PRP on an instance
defined over the locations in V is no smaller than:

LB = LBH +
∑
k∈K

LBV
k + 2Ddepot

Proof. This result directly follows from Propositions 1 and 2. The first term is a lower
bound on the H-cost, and the second one is the sum of lower bounds on the V-cost of
each block. The last term corresponds to the visit of the depot.

Corollary 1. The first step of the AFCS heuristic is optimal at minimizing vertical
cost while ensuring feasibility, and the second step of the AFCS minimizes optimally the
horizontal cost when aisle traversals are already determined.

Proof. The construction of Step 1 provides a lower bound on the V-cost according to
Proposition 1. Since it also leads to a feasible solution by performing Step 2, Step 1 is
optimal when minimizing the V-cost.
The first operation of Step 2, i.e., the construction of the 1-cross traversals, is the only
way to ensure that each intersection has an even degree. Indeed, in each cross aisle
the only intersections of odd degree are the ones corresponding to 1-pass. Hence, the
only way to restore the parity of their degrees is to connect to 1-pass intersections with
1-cross traversals. Since they are all located on a line, the only way to connect two
intersections of odd degree is to connect the two successive ones, which is the operation
in Step 2. Then, the construction of the 2-cross traversal can be modeled as an MST
problem, which we solve to optimality. Therefore, Step 2 optimally minimizes the H-cost
when aisle traversals are fixed.

4.5 Approximation ratio for the AFCS heuristic

According to Corollary 1, each step of the AFCS is optimal. While it is easy to show that
the AFCS as a whole is not optimal, the natural question that arises is how bad can be,
in the worst case, the quality of the solution provided by the AFCS heuristic. Theorem 3
answers this interrogation by providing an approximation ratio for the algorithm.

17



Theorem 3 (Approximation ratio of the AFCS heuristic). Let us consider an instance
of the PRP induced by a non empty set V ⊂ L0, such that v0 ∈ V and let z∗ be the cost of
its optimal solution. The cost of the solution returned by the AFCS heuristic is no larger
than: (

1 + KADaisle

Kc1pass + ADaisle

)
z∗

With c1pass = (L− 1)Dloc + 2Dfirst representing the cost for a full aisle traversal.

Proof. Let z be the value of the solution with the AFCS heuristic, the approximation
ratio can be computed as:

z

z∗ ≤
z

LB
≤ LB + ∆

LB
≤ 1 + ∆

LB
(1)

Next, we distinguish between two cases:

• If the last visited block contains at least two 1-pass traversals in the AFCS solution,
then we have:

LB =
∑

1≤k≤kmax

LBV
k + 2amaxDaisle + 2Ddepot

Since we have 2Ddepot > 0 and each block is traversed by at least two 1-pass
traversal so that LBV

k ≥ 2c1pass for all 1 ≤ k ≤ kmax, we can reformulate the
equation:

LB ≥ 2kmaxc1pass + 2amaxDaisle (2)

Furthermore, we observe that, by construction of the AFCS solution, ∆ ≤ 2kmaxamaxDaisle.
With these results, Equation (1) becomes:

z

z∗ ≤ 1 + kmaxamaxDaisle

kmaxc1pass + amaxDaisle
(3)

By multiplying each side of the fraction by KA
amaxkmax , which is valid since V is sup-

posed to be non empty, so that kmax > 0 and amax > 0, and we get:

z

z∗ ≤ 1 + KADaisle

KAc1pass

amax + KADaisle

kmax

Since amax ≤ A and kmax ≤ K, we can simplify the bottom terms by:

z

z∗ ≤ 1 + KADaisle

Kc1pass + ADaisle

• If the last visited block is only visited by bottom traversals in the AFCS solution,
the proof is very similar to the first case, with minor differences considering the
last block. First, when looking at LB, the last block is not crossed entirely, so that
the term kmax is replaced by kmax − 1 in Equation (2). Then, we observe that the

18



last block is visited by bottom only, so that there are only kmax cross aisles visited
(kmax +1 in the general case), so the difference between the LB and the solution cost
is at most ∆ ≤ 2(kmax − 1)amaxDaisle. In this case, the terms kmax in Equation (3)
are replaced by kmax−1. At this stage we need to investigate two cases. If kmax ≥ 2,
we can directly divide by kmax−1 and the rest of the proof is similar to the first case.
If kmax = 1, we cannot divide by kmax − 1, but we observe that in Equation (3),
with (kmax − 1) instead of kmax, the fraction is equals to 0 and the result remains
valid.

Observation. We note that this ratio only depends on the geometry of the considered
warehouse layout, and not on the locations to visit. To illustrate with some examples,
let us consider the JOBPRP benchmark sets where all instances in one set use the same
layout, the ratio is equal to 1.52 for the instances of Henn and Wäscher (2012) and
Žulj et al. (2018), and 1.71 for the instances of Muter and Öncan (2015). For the other
benchmark sets, the geometry of the layout depends on the instance, and the ratio as well.
For the SLAPRP instances of Silva et al. (2020), the ratio is between 1.09 and 1.67. For
the PRP instances of Theys et al. (2010), the ratio is between 1.27 and 7.31, worsening
as the number of blocks increases.

Corollary 2 (Approximation ratio for single-block warehouses). For a single-block ware-
house, the cost of the solution returned by the AFCS heuristic is no larger than twice the
optimal objective value.

Proof. This result is directly implied by replacing the parameters with their respective
values in the expression of the approximation ratio.

5 Move evaluation and neighborhood exploration

In this section, we propose an efficient procedure to explore neighborhoods for OP prob-
lems where the objective is to minimize a cumulative function of the aisle costs. First, let
us introduce some notations.
Consider an OP problem whose set of feasible solutions is noted S, and N : s ∈ S →
N (s) ⊂ S a neighborhood function for the problem. For a solution s ∈ S, the objective
is to efficiently explore N (s) to find the least-cost neighbor of s. The transformation of
s into one of its neighbors s′ ∈ N (s) is referred to as a move and noted s → s′. We
denote R the set of routes of s. Since a route might be empty, we suppose without loss
of generality that R(s) is of constant size for all solutions. The move s → s′ modifies
a subset Rs→s′ ⊂ R of routes in the solution. For each modified route r ∈ Rs→s′ , we
say that an aisle aki ∈ A is modified by s → s′ if, and only if, the visited locations
have changed. We emphasize that an aisle whose visited locations remain unchanged is
not considered modified, even if the traversal of the aisle is modified, as this information

19



cannot be known a priori. Finally, we note As→s′(r) the set of modified aisles by the move
s→ s′ in route r ∈ R.
The remaining of this section is organized as follows. First, we derive routines to un-
derestimate and overestimate moves in Section 5.1, based on the AFCS heuristic. Then,
we introduce another move overestimation routine based on the dynamic programming
algorithm of Ratliff and Rosenthal (1983); Pansart et al. (2018) in Section 5.2. Finally,
these results are embedded into an efficient neighborhood exploration scheme in Sec-
tion 5.3, where the exploration of the neighborhood is pruned using the underestimation
and overestimation routines.

5.1 Move underestimation and overestimation with the AFCS
bounds

As presented in Section 4.4, the first step of the AFCS heuristic provides a lower bound
on the cost of a PRP solution, which can be used as a cost underestimation routine for
each modified route r ∈ Rs→s′ . Similarly, the second step of the AFCS yields a valid PRP
solution, providing a cost overestimation for each modified route. Hence, by summing
over all modified routes, the routines can be applied to underestimate and overestimate
moves.

Implementation details and time complexity. Although the complexity of both
steps of the AFCS heuristic run in O(|V| + KA) time on a PRP instance, a careful
implementation may decrease this complexity in certain cases when applying the AFCS
to move evaluation. For a route r ∈ Rs→s′ , we suppose that all parameters computed
during the first phase of AFCS are kept in memory. Then, we observe that, for each
block, we may update parameters related to the modified aisles As→s′(r) only:

• The aisle traversal costs only change for modified aisles.

• As explained in the complexity proof in Section 4.3, the aisles that are set to 1-pass
are only determined by the cost of two specific aisles, i.e. the 1-pass aisle with the
lowest no-pass cost, and the no-pass aisle with the highest no-pass cost. If this
information is stored, they can be updated by only examining modified aisles.

• The only case where the procedure needs to pass through all aisles is if the block is
traversed by bottom only. We observe that, in the case where N only consists of
insertions of locations to visit, as it is the case with the classical LNS neighborhoods,
it does not occur that a block that was not visited by bottom-only becomes bottom-
only.

Hence, for the LNS neighborhoods, the move underestimation routine may run in O(|V |+
|As→s′(r)|).

20



5.2 Move overestimation with the critical upper bound

In this section we introduce an efficient heuristic to compute an overestimation of moves,
coined the critical upper bound heuristic. The provided bound can be interpreted as the
increase of the critical path in the extended state space of the DP algorithm proposed by
Pansart et al. (2018), due to the alteration in edge costs. For a modified route r ∈ Rs→s′ ,
we suppose that the routing and cost of r are known. Algorithm 2 outlines a routine that
returns an overestimation of the modified route cost. Note that this heuristic may fail to
return a solution (and therefore a bound) in some cases. Especially, it cannot be used as
a constructive heuristic from scratch as it will always fail to return a solution when no
previous routing is provided. Figure 6 illustrates the different cases met by this heuristic.

Algorithm 2: Critical upper bound heuristic
Input: r, costs before modification ct

ki(r) for t ∈ {top, bottom, gap}
1: Delta← 0
2: r′ ← r

3: Compute ctop
ki (r′), cbottom

ki (r′) and cgap
ki (r′) for aki ∈ As→s′(r)

4: for aki ∈ As→s′(r) do
5: if aki is visited by r then // case (a)
6: t← aki traversal in r
7: ∆← ∆ + ct

ki(r′)− ct
ki(r)

8: else
9: δ ← +∞

10: if d(pk
i ) > 0 then // case (b)

11: δ ← min(δ, cbottom
ki (r′))

12: if d(pk+1
i ) > 0 then // case (c)

13: δ ← min(δ, ctop
ki (r′))

14: if d(pk
i )d(pk+1

i ) > 0 then // case (d)
15: δ ← min(δ, cgap

ki (r′))
16: ∆← ∆ + δ

17: Return ∆

First, the procedure computes the traversal costs for the modified aisles (line 3). Then,
for each modified aisle, it checks if the aisle was previously visited by r (line 5). If that
is the case, we use the modified cost of the traversal used in r (line 6 and 7). Otherwise,
the procedure checks if it is possible to visit the aisle with bottom (lines 10 and 11), top
(lines 12 and 13), or largest gap (lines 14 and 15) traversals. This is done by checking
if the two intersections of the start and end of the aisle (i.e., pk

i and pk+1
i ) are visited or

not in r, in other words if their degrees are greater than 0. If neither of those points was
visited, ∆ is set to +∞ (lines 9 and 16), leading the procedure to fail to return a finite
bound.

21



Figure 6: Illustration of the critical heuristic. Full lines represent the route before the
move, and dashed lines are the new traversals. In (a) the aisle was already visited, the
red stop is added by the move. In (b), (c) (d), (e) the aisle was not visited before. The
aisle can be visited by bottom in (b), top in (c), gap in (d). In (e) the heuristic fails to
return a bound.

Implementation details and complexity. It is straightforward from Algorithm 2
that the procedure runs in O(|V|+ |As→s′(r)|) time, as it only iterates through modified
aisles. Furthermore, few operations are performed at each iteration, so that the procedure
is very efficient in practice.

5.3 Neighborhood exploration

In this section we present an algorithm that efficiently use the results from Sections 5.1
and 5.2 to prune the neighborhood exploration. The underlying idea is to compute the
bounds in the hierarchical order, starting from the fastest (critical upper bound) to the
more time consuming (AFCS upper bound), and to use bound information to prune
dominated moves. More precisely, the procedure works as follows:

1. For each move s′ ∈ N (s), each modified route r ∈ Rs→s′(s′) and each modified aisle,
compute the bottom, top and largest gap traversal costs. The computation of these
parameters is required for move estimation, and for the computation of the exact
route cost.

2. For each move s′ ∈ N (s), compute ∆UB
crit(s′), and store the best upper bound found

∆UB
best. If the neighborhood only consists in adding visits to the route, as it will be

the case for the LNS developed in Section 6, the procedure can directly return a
move that does not deteriorate the solution, in other word if ∆UB

crit = 0.

3. For each move s′ ∈ N (s), compute ∆LB(s′).

4. For each move s′ ∈ N (s), first check if the move is dominated: if ∆LB(s′) > ∆UB
best

discard the move, otherwise compute ∆UB
AF CS and update ∆UB

best accordingly.

22



5. Among the nondominated moves, select the best one according to the best upper
bound among AFCS and critical.

6. Implement the selected move and compute the exact cost of the route using Pansart
et al. (2018), to ensure that we always work with PRP-optimal solutions.

6 Large neighborhood search algorithm

In this section we propose a generic LNS algorithm for OP planning problems. Some
algorithmic components are specific to the studied problems, namely the JOBPRP and
SLAPRP, but most of this section applies to a large class of problems. To remain generic
we call elements the solution components that are removed from the solution (i.e. the
orders for the JOBPRP and the SKUs for the SLAPRP) and position the possible in-
sertions for the elements. In other words, a position refers to a storage location for the
SLAPRP and to a route for the JOBPRP. An insertion is then a pair element/position.
The LNS metaheuristic was introduced by Shaw (1998) for routing problems, where it
enjoys a large popularity due to high performances (Ropke and Pisinger 2006). Basically,
it consists in sequentially destroy (resp. repair) a solution using removal (resp. insertion)
operators in the aim of finding one of good quality. Algorithm 3 outlines the main steps
of our LNS approach. First, in line (1), an initial solution is generated (see Section 6.1).
The main loop, from lines (2) to (9), iterates until the termination criterion is met. In
line (4), a removal operator ω− is randomly selected from a set Ω− of operators (see
Section 6.2). Similarly, in line (5), an insertion operator ω+ is randomly selected from a
set Ω+ (see Section 6.3). In line (6), a destruction size ϕ is randomly selected from the
interval [ϕmin, ϕmax]. ϕ corresponds to the percentage of elements to be removed from the
current solution.
The selected operators are executed on the current solution s′ in line (7). First, ϕ% of
the elements are removed from s′ with the operator ω−, and placed in an insertion pool.
Then, the elements within the insertion pool are inserted in s′ with the operator ω+. In
line (8-9), the local search procedure is applied to the solution depending on a certain
criterion (see Section 6.4). In line (10-11), an acceptance criterion tests whether the new
solution should replace the current solution for the next iteration (see Section 6.5). In
line (12) a post-processing routine is applied in order to improve the best solution found
(see Section 6.6).

6.1 Initial solution

For the SLAPRP, the initial solution is determined by randomly assigning SKUs to the
different locations. For the JOBPRP, the number of batches needs to be optimized as well.
Therefore, the initial solution is computed using the saving heuristic, and the resulting
number of batches is used throughout the run. The savings heuristic starts by assigning
each order to a separate route. At each iteration, the algorithm computes the distance
saving of merging each pair of routes that does not violate the capacity constraint. The

23



Algorithm 3: LNS algorithm
1: s← initial_solution()
2: while termination_criterion() == false do
3: s′ ← s
4: randomly select a removal operator ω− ∈ Ω−

5: randomly select an insertion operator ω+ ∈ Ω+

6: randomly select a destruction size ϕ ∈ [ϕmin, ϕmax]
7: s′ ← ω+(ω−(s′, ϕ))
8: if local_search_criterion() == true then
9: s′ ← local_search(s′)

10: if acceptance_criterion(s′) == true then
11: s← s′

12: post_processing()
13: return the best solution found

two routes inducing the largest saving are merged. The algorithm iterates until there are
no more routes that can be merged.

6.2 Removal operators

The LNS uses the following removal operators:

• Random removal, where ϕ% elements are randomly selected to be removed from the
solution.

• Related removal that removes elements that are considered “related” to each other.
For two orders oi, oj ∈ O, we note di (resp. dj) the cost of retrieving oi (resp. oj), dij

the cost of retrieving both oi and oj and H(oi, oj) the Hausdorff distance between oi

and oj, defined as follows. For each location visited by oi, select the closest location
visited by oj. The largest of these distances is called the Hausdorff distance (Aerts
et al. 2021). The relatedness function between oi and oj is defined as:

R(i, j) = α(1− di + dj − dij

min(di, dj)
) + β

H(oi, oj)
dmax

+ γ
|qi − qj|

max(qi, qj)
(4)

Where the first term corresponds to the normalized savings between oi and oj as
defined in (Žulj et al. 2018), the second term to the normalized Hausdorff distance
between oi and oj as defined in (Aerts et al. 2021), with dmax representing the
maximal distance between two locations, and the last term to the difference between
the orders consumed capacity. Note that all terms are scaled between 0 and 1. To
avoid unnecessary computations, the relatedness matrix is only computed once at
the start of the run, since it only depends on characteristics of the instance. For

24



two SKUs si, sj ∈ Λ, the relatedness function is defined as:

R(i, j) = λ
dL(si)L(sj)

dmax
+ µ(1− |O(si) ∩ O(sj)|

max(|O(si)|, |O(sj)|)
) (5)

Where the first term dL(si)L(sj) corresponds to the distance between the locations of
the two SKUs in the current solution, and the second term to the number of orders
the two SKUs have in common.

• Largest aisle reduction removal where, for each element, the procedure computes
the reduction in the total number of visited aisles when removing the element, and
removes the elements with the largest scores.

Blink mechanism. The blink mechanism was introduced by Christiaens and Van-
den Berghe (2020) to diversify the search process of their LNS insertion operators de-
veloped for the Vehicle Routing Problem. Each time an element is selected for removal,
there is a probability pblink that the element is skipped, and instead, the next best element
is selected.

6.3 Insertion operators

The LNS uses the following insertion operators.

• Random element, best insertion. A random element is selected from the insertion
pool and inserted in the position minimizing the cost.

• Best element, best insertion. At each iteration the operator computes, for each
element in the insertion pool, the cost of all feasible insertions, and performs the
best overall insertion.

• Largest element, best insertion. This operator first sorts the element of the insertion
pool by non-increasing order of size (i.e., number of picking lines associated with
the element). Then, elements are sequentially inserted at their best positions. If
several elements have the same size, one is randomly chosen among them.

• k-regret insertion. At each insertion, the operator computes the insertion cost of
each element in each feasible insertion. The element that has the largest difference
between the cost of its best insertion and the cost of its kth best insertion is inserted
at its best position. In this work, we use the 2-regret and 3-regret operators.

Blink mechanism. Similarly to removal methods (see Section 6.2), the blink mecha-
nism is used when selecting an element to insert, in order to diversify the search by adding
randomness.

25



Implementation details. An important feature of the studied problems is the vari-
ability in the size of elements. We define the size of an element as the number of order
lines added in the solution when inserting the element: for the JOBPRP, the size of an
order is the number of SKUs, and for the SLAPRP, the size of an SKU is the number
of orders picking this SKU. When comparing moves, the cost of inserting an element is
always divided by its size, such that the largest elements are not left for the end, where
their insertion becomes more challenging (e.g., due to capacity constraints).

6.4 Local search

Local search is employed to strengthen the intensification capabilities of the LNS, using a
Tabu Search (TS) algorithm. TS is a local search metaheuristic framework first introduced
by Glover (1986) that has been successfully applied to a large variety of combinatorial
optimization problems. At each iteration, the TS procedure explores the neighborhood
N (s) of the current solution s and selects the best neighbor. In our implementation,
we use the swap and relocate neighborhoods. The swap considers each feasible swap
of two elements in the solution and the relocate tries to move each element into every
feasible position. To prevent cycling in the search process, recently visited solutions are
prohibited and inserted in a tabu list for η iterations. To improve the diversification of
the TS procedure, at each iteration a random move is selected in the set of nondominated
moves (see Section 5), rather than always picking the most promising one.

Implementation details Local search is first called to improve the initial solution, and
then, with a probability plocal whenever the solution returned by the removal/insertion
operators is feasible. The TS runs for 500 iterations, and the tabu size is defined as the
minimum between the size of the instance (number of orders for the JOBPRP, number
of SKUs for the SLAPRP) and 100. The tabu list is emptied whenever all moves of the
neighborhood are either infeasible or tabu.

6.5 Acceptance criterion

At each LNS iteration, the acceptance criterion determines if the newly generated solution
should replace the current solution for the next iterations. First, the cost of the generated
solution is computed exactly by utilizing the DP algorithm of Pansart et al. (2018) on each
route of the solution. The cost of the solution is then modified according to Equation (6)
to account for the elements that could not be inserted in the solution, with B representing
the insertion pool of the current solution, E the set of all the elements, and ψ a constant
parameter.

modified cost = cost× (1 + ψ
|B|
|E|

) (6)

Santini et al. (2018) performed a comparative analysis of different acceptance criteria
for the ALNS on CVRP instances. They advocate for the record-to-record travel, which

26



we use in our algorithm. A newly generated solution is accepted to replace the current
solution if its cost does not exceed T% more than the cost of the best-known solution. T
decreases linearly over time, from an initial temperature T0 to 0 when the time limit is
reached.

6.6 Post processing

At the end of the run, we solve a set-covering problem to improve the best solution found.
The column pool used consists of all the routes generated during the search process.
Since the number of routes in the pool can be quite large, we limit the running time of
the set-covering program to one minute.

7 Numerical experiments

In this section, we report a summary of the experiments performed on the AFCS heuristic
for the PRP and on the LNS algorithm for the JOBPRP and SLAPRP. All implementa-
tions are coded in Julia 1.7.2, and CPLEX 12.10 is used to solve the set-covering problems.
We set CPLEX to run in single-thread mode, and the MIP emphasis parameter to empha-
size “hidden feasibility”over optimality. All other parameters are set to default settings.
The experiments are performed in single-thread computation on an Intel Xeon E5-2660
v3 CPU clocked at 2.6 GHz, with a memory limit of 8 GB. All computing times are
expressed in seconds. The detailed computational results and the source code for the
implementation will made publicly available after the publication of the article version of
this chapter. In all computational experiments, the gap between a solution z and the best
known solution zBKS is computed as 100(z − zBKS)/zBKS. A time limit of 5 minutes is
used for all runs, from which one minute is dedicated to the resolution of the set covering
model for the JOBPRP. Alternatively, a run terminates after 20000 iterations without
improvement of the best solution found.
Concerning the values of the numerical parameters, we use the following values for the
JOBPRP runs: ϕmin = 0.02, ϕmax = 0.2, α = 10, β = 3, γ = 1, pblink = 0.05 for removal
operators and pblink = 0.02 for insertion operators. The probability to call the local search
is plocal = 0.002. The initial temperature is T0 = 0.01 and the penalty is ψ = 10. All
operators are equiprobable. For the SLAPRP runs, we use the following parameter values:
λ = 1, µ = 1, plocal = 5× 10−4, T0 = 0.02. All other parameters use the same values as in
the JOBPRP runs.
In this Section, we first describe the instances we use for the experiments in Section 7.1.
We report numerical experiments on JOBPRP instances on the benchmark set of Henn
and Wäscher (2012) in Section 7.2, the benchmark set of Muter and Öncan (2015) in
Section 7.3, the benchmark set of Wahlen and Gschwind (2023) in Section 7.4 and the
benchmark set of Žulj et al. (2018) in Section 7.5. Finally, we present results on the
SLAPRP instance set of Silva et al. (2020) in Section 7.6.

27



7.1 Benchmark instances

The following benchmark instances are used for the numerical experiments:

• The JOBPRP set of Henn and Wäscher (2012). The set is defined on a
single-block warehouse with A = 10 aisles and L = 45 locations per aisle. The
demand consists of |O| ∈ {20, 30, 40, . . . , 100} orders, each consisting of 14.3 SKUs
on average. The picker capacity is Q ∈ {30, 45, 60, 75} and the storage assignment
is made using two different strategies: class-based and uniformly distributed. The
complete set comprises 5760 instances.

• The JOBPRP set of Muter and Öncan (2015) extended by Wahlen and
Gschwind (2023). The set, noted M&Ö, is defined on a single-block warehouse
with A = 10 aisles and L = 10 locations per aisle. The demand consists of
|O| ∈ {20, 30, 40, . . . , 100} orders that have an average size of 6.1 SKUs. The
picker capacity is originally of Q ∈ {24, 36, 48}, but it has been further extended
to Q ∈ {60, 72} by Wahlen and Gschwind (2023). The complete set comprises 450
instances.

• The JOBPRP set of Žulj et al. (2018). The set is defined on a single-block
warehouse with A = 10 aisles and L = 10 locations per aisle. The demand consists of
|O| orders for a picker capacity Q, with the following pairs (|O|, Q) used to generate
instances: (200, 6), (200, 9), (200, 12), (200, 15), (300, 6), (400, 6), (500, 6) and
(600, 6). Order sizes are uniformly distributed in {1, . . . , 5}.

• The JOBPRP set of Wahlen and Gschwind (2023). The set is defined on
a single-block warehouse with A = 10 aisles and L = 10 locations per aisle. The
demand consists of |O| ∈ {100, 125, 150, 175, 200, 225, 250} orders. Two methods
are used to generate the orders: uniform where each order has a fixed size of 6,
and random where the order sizes are randomly drawn from {2, . . . , 10}. The picker
capacity takes values in Q ∈ {24, 36, 48, 60, 72}. Hence, this benchmark set contains
the largest instances for the JOBPRP among the ones presented in this section.

• The large SLAPRP set of Silva et al. (2020). It contains 486 instances defined
on single-block layouts with A ∈ {5, 10, 20} aisles and L ∈ {10, 50} locations per
aisle. The demand includes a number |O| ∈ {10, 30, 50} of orders, each of them
consisting of qo ∈ {5, 20, 50} SKUs. Three different scenarios are used to generate
orders, random where the SKUs are equiprobable, and two other scenarios of skewed
demands where the distribution of the demand follows the Pareto principle.

7.2 Benchmark on the set of Henn & Washer

In this section, we test our algorithm on the instance set of Henn and Wäscher (2012).
The comparison is made against the results of Wahlen and Gschwind (2023) that propose
two column generation-based heuristics: the SC-2 heuristic that only solves the root node

28



of the search tree and launches a set covering model with all the routes found, and BPC-
DF-2 heuristic that is a diving approach exploring the search tree depth first. The authors
limited the computing time to two minutes. To the best of our knowledge, Wahlen and
Gschwind (2023) proposes the state-of-the-art results on all the JOBPRP benchmark sets,
outperforming the existing literature. Hence, we will benchmark against their solution
methods on all instance sets. Table 2 presents the results on the instances of Henn and
Wäscher (2012), and reports, for each method, the average gap to the best known solution
in percentage and the average running time. For our algorithm, the column gap LNS
reports the gap after termination of the LNS, before launching the set covering model.
The other columns reports results for the complete algorithm. The column iteration
presents the total number of iterations (i.e., both LNS and TS). The column Inst reports
the number of instances in each line.

Table 2: Results on the benchmark set of Henn and Wäscher (2012)

Instances W&G SC-2 W&G BPC-DF-2 Our method
storage Q Inst gap time gap time gap gap LNS time iterations

CBD 30 720 0.0 0.1 0.0 0.3 0.0 0.1 39.5 31154
45 720 0.0 1.3 0.0 11.6 0.2 0.5 84.2 37783
60 720 0.1 18.5 0.1 45.4 0.4 0.6 106.2 38300
75 720 0.4 46.4 0.2 64.5 0.5 0.6 125.6 39919

UD 30 720 0.1 0.1 0.1 0.1 0.1 0.2 40.4 31782
45 720 0.1 1.8 0.1 18.6 0.3 0.6 87.4 38040
60 720 0.2 32.3 0.1 59.2 0.5 0.6 118.3 41414
75 720 0.6 56.4 0.3 75.5 0.6 0.6 133.4 40237

Total 5760 0.2 19.6 0.1 34.4 0.3 0.5 91.9 37329

We observe that our algorithm slightly underperforms in terms of solution quality when
compared to SC-2 and BPC-BF-2, although solutions deviate to a minor extent (≈ 0.3%)
from the best known ones. Furthermore, we observe that the solution times of the column
generation-based approaches remain unmatched.

7.3 Benchmark on the set of Muter & Öncan

In this section, we report the experiments conducted on the instance set of Muter and
Öncan (2015). This set was originally using the capacity values Q ∈ {24, 36, 48}, but it
has been extended by Wahlen and Gschwind (2023) to include larger instances of capacity
Q ∈ {40, 72}. We compare our solution method against the two column generation-based
approaches of Wahlen and Gschwind (2023). Note that, to the best of our knowledge,
Wahlen and Gschwind (2023) proposes the state-of-the-art results on this benchmark set.
Table 3 summarizes the results of these experiments, the column definitions are introduced
in Section 7.2.
From Table 3, we observe that the BPC-DF-2 method provides the best solutions for
smaller values of the capacities (i.e., 24 and 36). However, the LNS algorithm scales
better for the instances with larger capacities, with a similar running time. This result is

29



Table 3: Results on the benchmark set of Muter and Öncan (2015)

Instances W&G SC-2 W&G BPC-DF-2 Our method
Q Inst gap time gap time gap gap LNS time iterations
24 90 0.1 4.9 0.0 31.5 0.3 0.7 82.7 42201
36 90 0.7 53.8 0.2 70.3 0.6 0.6 100.6 38187
48 90 2.1 73.1 1.5 88.3 0.5 0.6 109.1 38283
60 90 8.7 89.7 7.3 94.3 0.5 0.5 111.2 32838
72 90 10.0 102.2 9.8 106.0 0.4 0.4 139.2 32233

Total 450 4.3 64.8 3.8 78.1 0.5 0.6 108.6 36749

unsurprising, as larger capacities generate more challenging pricing problems for column
generation-based methods.

7.4 Benchmark on the set of Wahlen & Gschwind

In this section, we evaluate our algorithm on the instances introduced by Wahlen and
Gschwind (2023). Table 4 summarizes the obtained results, the columns definitions are
provided in Section 7.2. In this benchmark set, two different methods are used to generate
the demand: either the order size is uniform (fixed at 6) for all orders, or it is randomly
drawn from {2, . . . , 10}.

Table 4: Results on the benchmark set of Wahlen and Gschwind (2023)

Instances W&G SC-2 W&G BPC-DF-2 Our method
qo Q Inst gap time gap time gap gap LNS time iterations

random 24 100 0.8 111.6 0.8 120.0 1.3 1.8 277.2 43837
36 100 6.0 120.0 8.9 120.0 1.4 1.5 293.6 40126
48 100 16.3 120.0 16.3 120.0 1.2 1.2 301.7 37507
60 100 17.1 120.0 17.1 120.0 0.5 0.5 302.3 30579
72 100 16.8 120.0 16.8 120.0 0.0 0.0 303.9 23575

uniform 24 100 0.6 79.3 0.8 101.8 0.6 1.2 287.7 21885
36 100 6.4 119.2 7.8 120.0 1.1 1.1 294.4 20297
48 100 16.4 120.0 17.6 120.0 0.8 0.8 301.7 16552
60 100 19.8 120.0 19.8 120.0 0.6 0.7 270.1 14768
72 100 19.7 120.0 19.7 120.0 0.1 0.2 301.2 12722

Total 700 11.9 115.7 12.4 118.5 0.8 0.9 293.8 27973

From Table 4, we observe that our algorithm scales better with the increase of picker
capacity compared to the method developed in Wahlen and Gschwind (2023). This result
is unsurprising, as the increase of capacity leads to more challenging subproblems for
column generation-based approaches. Apart from the instances with a capacity of 24,
the LNS outperforms both methods from Wahlen and Gschwind (2023), although with a
longer running time.

30



7.5 Benchmark on the set of Zulj, Kramer and Schneider

In this section, we test our algorithm on the instance set introduced by Žulj et al. (2018).
The authors propose a hybrid LNS and TS metaheuristic that share certain algorithmic
components with our implementation. However, they only perform experiments with the
S-shape and largest gap routing, representing a more constraint version of the problem.
We compare our method with the two column generation-based algorithms of Wahlen
and Gschwind (2023) that solve the routing optimally. Note that, in their numerical
experiments, the solution methods of Wahlen and Gschwind (2023) clearly outperform
the one from Žulj et al. (2018) when S-shape and largest gap routing are used. To the
best of our knowledge, Wahlen and Gschwind (2023) presents the state-of-the-art results
on this benchmark set. Table 5 presents the results of the experiments, with the columns
definitions introduced in Section 7.2.

Table 5: Results on the benchmark set of Žulj et al. (2018)

Instances W&G SC-2 W&G BPC-DF-2 Our method
Q |O| Inst gap time gap time gap gap LNS time iterations
6 200 10 0.7 2.8 0.7 111.3 0.2 1.0 273.2 45468

300 10 0.5 12.1 0.6 120.0 0.2 1.5 291.3 24292
400 10 0.4 17.0 0.6 120.0 0.2 1.8 303.1 17122
500 10 0.3 31.3 0.6 120.0 0.3 2.4 304.1 10942
600 10 0.3 78.1 1.4 120.0 0.3 2.4 304.2 6608

9 200 10 0.1 33.1 0.9 120.0 0.9 2.0 271.3 39390
12 200 10 0.7 119.3 1.1 120.0 1.1 1.5 298.1 41908
15 200 10 2.0 119.9 1.4 120.0 1.0 1.0 307.1 36545

Total 60 0.6 51.7 0.9 118.9 0.5 1.7 294.1 27784.0

From Table 5, we observe that our method provides slightly improved results compared
to the SC-2 algorithm, albeit with longer running times. For this set of instances, the
set covering post processing clearly improves our results, passing from an average gap of
1.7% to 0.5%. This result is unsurprising considering the small capacity of the instances,
with most of the set consisting of a capacity of six, resulting in a large number of routes
in the solutions. This is typically the situation where mathematical programming-based
methods are more adapted.

7.6 Benchmark on the SLAPRP instances

In this section, we test our algorithm on the large SLAPRP instance set of Silva et al.
(2020). The authors propose a General Variable Neighborhood Search (GVNS) meta-
heuristic for the problem, and test their algorithm with different routing methods (i.e.,
return, S-shape midpoint, largest gap and optimal). The optimal routing is computed
using the Lin-Kernighan-Helsgaun (LKH) heuristic (Helsgaun 2000) developed to solve
the TSP, called from an external library. Since this implementation is slow, they propose
an improved version of the algorithm: first, route costs are computed using the midpoint
heuristic until convergence of the GVNS, then the GVNS is relaunched using the LKH

31



for route computation to improve the solution. Table 6 presents the results of three so-
lution methods. Silva et al. (opt) presents results obtained by the GVNS of Silva et al.
(2020) with the LKH heuristic, and Silva et al. (opt + mp) the results when combining
the LKH with the midpoint policy. Our method presents the algorithm described in the
present paper. For each solution method we report the average gap to the best known
solution and the average running time in seconds. The algorithms of Silva et al. (2020)
are launched five times on each instance, so we report the average values in the results.

Table 6: Results on the benchmark set of Silva et al. (2020)

Instance Silva et al.
(opt.)

Silva et al.
(opt. + mp) Our method

A |O| qo picks Inst gap time gap time gap time iterations
5 10 5 50 18 1.2 7203.0 0.0 3352.0 2.6 84.0 23936

20 200 18 47.4 7562.0 2.0 4775.0 5.3 294.0 17265
50 500 18 10.2 7456.0 2.5 6393.0 10.2 300.0 6645

30 5 150 18 3.2 7212.0 0.9 4460.0 2.3 274.0 20703
20 600 18 16.9 7485.0 5.1 7173.0 11.5 300.0 5349
50 1500 18 7.4 7453.0 1.2 7201.0 6.0 300.0 2321

50 5 250 18 2.8 7216.0 0.6 5047.0 2.7 298.0 13951
20 1000 18 5.8 7307.0 1.8 7201.0 9.9 300.0 3837
50 2500 18 5.6 7719.0 0.7 7202.0 5.1 300.0 1905

10 10 5 50 18 1.2 7207.0 0.1 4343.0 2.1 182.0 23701
20 200 18 96.6 7686.0 1.8 6586.0 5.6 300.0 8082
50 500 18 53.4 7717.0 3.0 7201.0 12.8 300.0 3088

30 5 150 18 4.1 7221.0 1.5 5717.0 1.8 300.0 12802
20 600 18 37.0 7431.0 3.0 7201.0 12.4 300.0 3269
50 1500 18 15.7 7268.0 1.7 7202.0 5.9 301.0 1521

50 5 250 18 3.1 7234.0 0.7 7145.0 1.9 300.0 7619
20 1000 18 18.4 7409.0 9.0 7201.0 21.7 300.0 1776
50 2500 18 18.7 7201.0 1.0 7204.0 8.8 301.0 1453

20 10 5 50 18 1.5 7215.0 0.0 5919.0 1.4 226.0 17384
20 200 18 115.6 7994.0 3.3 7201.0 1.2 300.0 4647
50 500 18 80.7 7212.0 3.1 7201.0 9.6 302.0 1659

30 5 150 18 4.1 7242.0 2.0 7201.0 1.8 300.0 7738
20 600 18 40.5 7587.0 2.0 7202.0 11.0 301.0 1741
50 1500 18 34.2 7207.0 5.7 7205.0 17.4 302.0 1121

50 5 250 18 4.1 7289.0 1.6 7201.0 3.4 300.0 4457
20 1000 18 32.4 7664.0 1.8 7203.0 21.6 301.0 1374
50 2500 18 24.7 7210.0 2.0 7212.0 14.5 305.0 735

Total 486 25.4 7393.0 2.2 6524.0 7.8 284.0 7410

From Table 6, we observe that our method outperforms the GVNS with LKH heuristic,
reducing the average gap from 25.4% to 7.8% on average. However, it is slightly less
performing than the GVNS with both LKH and midpoint heuristic achieving an average
gap of 2.2%. However, our approach is faster, as we limited the run time to 300 seconds,
whereas the GVNS of (Silva et al. 2020) runs for 2h on most instances. There is probably
room for improvement for our method, as the LNS components have mostly been designed

32



for the JOBPRP.

8 conclusion

In this paper, we introduced a novel constructive heuristic for the PRP in rectangular
multi-block warehouses, coined AFCS, that builds first the aisle traversals and then the
cross aisle traversals. The AFCS runs in linear time of the size of the instance, and returns
solutions with a performance guarantee. The AFCS provides upper and lower bounds
on the picking distance of a route. From these results, we proposed move evaluation
routines relying on the bounds returned by the AFCS as surrogate objective functions.
Additionally, we introduce another move evaluation heuristic based on the DP algorithm
of Pansart et al. (2018). An efficient neighborhood exploration routine is developed to
prune dominated parts of the neighborhood exploration based on bounds information.
These contributions are integrated in an LNS algorithm that is benchmarked on JOBPRP
and SLAPRP instances from the literature, achieving competitive results against state-
of-the-art methods. This study comforts results from the literature that problem-specific
knowledge, and especially the use of aisle modeling, is a key element to design efficient
algorithms for OP problems.
In the future, we expect further research on integrated problems in warehousing logistics,
as they improve the OP performances (van Gils et al. 2018). A natural extension of
the present work is the joint optimization of storage, batching, and routing decisions.
The resulting problem would provide new insights on the interactions between the three
decisions, and is industrially relevant to the replenishment of the picking area (Prunet
et al. 2024). Another promising direction would be the adaptation of our methodology to
other OP problems, such as the integration of order sequencing decisions (D’Haen et al.
2023; Briant et al. 2023) or scattered storage (Weidinger 2018).

References

Aerts, B., Cornelissens, T., and Sörensen, K. (2021). The joint order batching and picker
routing problem: Modelled and solved as a clustered vehicle routing problem. Comput-
ers & Operations Research, 129:105168.

Boysen, N., de Koster, R., and Weidinger, F. (2019). Warehousing in the e-commerce era:
A survey. European Journal of Operational Research, 277(2):396–411.

Boysen, N. and Stephan, K. (2013). The deterministic product location problem under a
pick-by-order policy. Discrete Applied Mathematics, 161(18):2862–2875.

Briant, O., Cambazard, H., Cattaruzza, D., Catusse, N., Ladier, A.-L., and Ogier, M.
(2020). An efficient and general approach for the joint order batching and picker routing
problem. European Journal of Operational Research, 285(2):497–512.

33



Briant, O., Cambazard, H., Cattaruzza, D., Catusse, N., Ladier, A.-L., and Ogier, M.
(2023). Lower and upper bounds for the joint batching, routing and sequencing problem.
arXiv:2303.17834 [math].

Cheng, C.-Y., Chen, Y.-Y., Chen, T.-L., and Jung-Woon Yoo, J. (2015). Using a hybrid
approach based on the particle swarm optimization and ant colony optimization to solve
a joint order batching and picker routing problem. International Journal of Production
Economics, 170:805–814.

Christiaens, J. and Vanden Berghe, G. (2020). Slack Induction by String Removals for Ve-
hicle Routing Problems. Transportation Science, 54(2):417–433. Publisher: INFORMS.

Crainic, T. G., Gendreau, M., Soriano, P., and Toulouse, M. (1993). A tabu search
procedure for multicommodity location/allocation with balancing requirements. Annals
of Operations Research, 41(4):359–383.

de Koster, M. B. M., Van Der Poort, E., and Wolters, M. (1999). Efficient orderbatching
methods in warehouses. International Journal of Production Research, 37(7):1479–1504.

de Koster, R., Le-Duc, T., and Roodbergen, K. J. (2007). Design and control of ware-
house order picking: A literature review. European Journal of Operational Research,
182(2):481–501.

D’Haen, R., Braekers, K., and Ramaekers, K. (2023). Integrated scheduling of order
picking operations under dynamic order arrivals. International Journal of Production
Research, 61(10):3205–3226.

Elbert, R. M., Franzke, T., Glock, C. H., and Grosse, E. H. (2017). The effects of
human behavior on the efficiency of routing policies in order picking: The case of route
deviations. Computers & Industrial Engineering, 111:537–551.

Frazelle, E. (2016). World-class warehousing and material handling. McGraw-Hill Edu-
cation, New York, second edition edition.

Glover, F. (1986). Future paths for integer programming and links to artificial intelligence.
Computers & Operations Research, 13(5):533–549.

Guo, X., Chen, R., Du, S., and Yu, Y. (2021). Storage assignment for newly arrived items
in forward picking areas with limited open locations. Transportation Research Part E:
Logistics and Transportation Review, 151:102359.

Helsgaun, K. (2000). An effective implementation of the Lin–Kernighan traveling salesman
heuristic. European Journal of Operational Research, 126(1):106–130.

Henn, S. and Wäscher, G. (2012). Tabu search heuristics for the order batching problem in
manual order picking systems. European Journal of Operational Research, 222(3):484–
494.

Heßler, K. and Irnich, S. (2022). A note on the linearity of Ratliff and Rosenthal’s
algorithm for optimal picker routing. Operations Research Letters, 50(2):155–159.

34



Kulak, O., Sahin, Y., and Taner, M. E. (2012). Joint order batching and picker routing in
single and multiple-cross-aisle warehouses using cluster-based tabu search algorithms.
Flexible Services and Manufacturing Journal, 24(1):52–80.

Mantel, R. J., Schuur, P. C., and Heragu, S. S. (2007). Order oriented slotting: a new
assignment strategy for warehouses. European J. of Industrial Engineering, 1(3):301.

Masae, M., Glock, C. H., and Grosse, E. H. (2020). Order picker routing in ware-
houses: A systematic literature review. International Journal of Production Economics,
224:107564.

Menéndez, B., Pardo, E. G., Alonso-Ayuso, A., Molina, E., and Duarte, A. (2017). Vari-
able Neighborhood Search strategies for the Order Batching Problem. Computers &
Operations Research, 78:500–512.

Moons, S., Braekers, K., Ramaekers, K., Caris, A., and Arda, Y. (2019). The value of in-
tegrating order picking and vehicle routing decisions in a B2C e-commerce environment.
International Journal of Production Research, 57(20):6405–6423. Publisher: Taylor &
Francis _eprint: https://doi.org/10.1080/00207543.2019.1566668.

Muter, I. and Öncan, T. (2015). An exact solution approach for the order batching
problem. IIE Transactions, 47(7):728–738.

Pansart, L., Catusse, N., and Cambazard, H. (2018). Exact algorithms for the order
picking problem. Computers & Operations Research, 100:117–127.

Petersen, C. G. and Schmenner, R. W. (1999). An Evaluation of Routing and Volume-
based Storage Policies in an Order Picking Operation. Decision Sciences, 30(2):481–501.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1540-5915.1999.tb01619.x.

Prodhon, C. and Prins, C. (2016). Metaheuristics for Vehicle Routing Problems. In Siarry,
P., editor, Metaheuristics, pages 407–437. Springer International Publishing, Cham.

Prunet, T., Absi, N., and Cattaruzza, D. (2024). The Storage Location Assign-
ment and Picker Routing Problem: A Generic Branch-Cut-and-Price Algorithm.
arXiv:2407.13570 [cs].

Prunet, T., Absi, N., and Cattaruzza, D. (2025). A note on the complexity of the picker
routing problem in multi-block warehouses and related problems. Annals of Operations
Research.

Ratliff, H. D. and Rosenthal, A. S. (1983). Order-Picking in a Rectangular Warehouse: A
Solvable Case of the Traveling Salesman Problem. Operations Research, 31(3):507–521.

Roodbergen, K. J. and de Koster, R. (2001a). Routing methods for warehouses with
multiple cross aisles. International Journal of Production Research, 39(9):1865–1883.

Roodbergen, K. J. and de Koster, R. (2001b). Routing order pickers in a warehouse with
a middle aisle. European Journal of Operational Research, 133(1):32–43.

35



Ropke, S. and Pisinger, D. (2006). A unified heuristic for a large class of Vehicle Routing
Problems with Backhauls. European Journal of Operational Research, 171(3):750–775.

Santini, A., Ropke, S., and Hvattum, L. M. (2018). A comparison of acceptance crite-
ria for the adaptive large neighbourhood search metaheuristic. Journal of Heuristics,
24(5):783–815.

Schiffer, M., Boysen, N., Klein, P. S., Laporte, G., and Pavone, M. (2022). Optimal Pick-
ing Policies in E-Commerce Warehouses. Management Science, page mnsc.2021.4275.

Scholz, A. and Wäscher, G. (2017). Order Batching and Picker Routing in manual or-
der picking systems: the benefits of integrated routing. Central European Journal of
Operations Research, 25(2):491–520.

Shaw, P. (1998). Using Constraint Programming and Local Search Methods to Solve
Vehicle Routing Problems. In Maher, M. and Puget, J.-F., editors, Principles and
Practice of Constraint Programming — CP98, Lecture Notes in Computer Science,
pages 417–431, Berlin, Heidelberg. Springer.

Silva, A., Coelho, L. C., Darvish, M., and Renaud, J. (2020). Integrating storage location
and order picking problems in warehouse planning. Transportation Research Part E:
Logistics and Transportation Review, 140:102003.

Theys, C., Bräysy, O., Dullaert, W., and Raa, B. (2010). Using a TSP heuristic for routing
order pickers in warehouses. European Journal of Operational Research, 200(3):755–763.

Valle, C. A., Beasley, J. E., and da Cunha, A. S. (2017). Optimally solving the joint
order batching and picker routing problem. European Journal of Operational Research,
262(3):817–834.

van Gils, T., Caris, A., Ramaekers, K., and Braekers, K. (2019). Formulating and solving
the integrated batching, routing, and picker scheduling problem in a real-life spare parts
warehouse. European Journal of Operational Research, 277(3):814–830.

van Gils, T., Ramaekers, K., Caris, A., and de Koster, R. B. M. (2018). Designing efficient
order picking systems by combining planning problems: State-of-the-art classification
and review. European Journal of Operational Research, 267(1):1–15.

Wahlen, J. and Gschwind, T. (2023). Branch-Price-and-Cut-Based Solution of Order
Batching Problems. Transportation Science, 57(3):756–777.

Weidinger, F. (2018). Picker routing in rectangular mixed shelves warehouses. Computers
& Operations Research, 95:139–150.

Won, J. and Olafsson, S. (2005). Joint order batching and order picking in warehouse
operations. International Journal of Production Research, 43(7):1427–1442. Publisher:
Taylor & Francis _eprint: https://doi.org/10.1080/00207540410001733896.

Žulj, I., Kramer, S., and Schneider, M. (2018). A hybrid of adaptive large neighborhood
search and tabu search for the order-batching problem. European Journal of Operational
Research, 264(2):653–664.

36


	Introduction
	Related literature
	Mathematical description of the PRP and integrated problems
	Aisle First Cross Second heuristic
	Comprehensive description and illustrative example
	Formal description of the AFCS heuristic
	Complexity of the AFCS heuristic
	Lower Bound for the PRP
	Approximation ratio for the AFCS heuristic

	Move evaluation and neighborhood exploration
	Move underestimation and overestimation with the AFCS bounds
	Move overestimation with the critical upper bound
	Neighborhood exploration

	Large neighborhood search algorithm
	Initial solution
	Removal operators
	Insertion operators
	Local search
	Acceptance criterion
	Post processing

	Numerical experiments
	Benchmark instances
	Benchmark on the set of Henn & Washer
	Benchmark on the set of Muter & Öncan
	Benchmark on the set of Wahlen & Gschwind
	Benchmark on the set of Zulj, Kramer and Schneider
	Benchmark on the SLAPRP instances

	conclusion
	References

