
Primal-dual algorithm for contextual stochastic
combinatorial optimization

Louis Bouvier1*, Thibault Prunet2, Axel Parmentier2,
Vincent Leclère2

1*Co-innovation lab, Ecole Nationale des Ponts et Chaussées, avenue Blaise
Pascal, Champs sur Marne, 77455, France.

2CERMICS, Ecole Nationale des Ponts et Chaussées, avenue Blaise Pascal,
Champs sur Marne, 77455, France.

*Corresponding author(s). E-mail(s): louis.bouvier@enpc.fr;
Contributing authors: thibault.prunet@enpc.fr; axel.parmentier@enpc.fr;

vincent.leclere@enpc.fr;

Abstract
This paper introduces a novel approach to contextual stochastic optimization,
combining operations research and machine learning to address decision-making
under uncertainty. Traditional methods fall short in leveraging contextual
information, prompting the need for new algorithms. We use neural networks with
combinatorial optimization layers to encode policies. Our goal is to minimize the
empirical risk, estimated from past data on uncertain parameters and contexts.
To that end, we present a surrogate learning problem and a generic primal-dual
algorithm applicable to various combinatorial stochastic optimization settings.
Our approach extends classic Fenchel-Young loss results and introduces a new
regularization method using sparse perturbations on the distribution simplex. This
allows for tractable updates in the original space and handles diverse objective
functions.
We demonstrate the linear convergence of our algorithm under certain conditions
and provide a bound on the non-optimality of the resulting policy regarding
empirical risk. Experiments on a contextual stochastic minimum weight spanning
tree problem show that our algorithm is efficient and scalable, outperforming a
sophisticated Lagrangian-based heuristic with reduced computational effort.

Keywords: contextual stochastic combinatorial optimization, empirical risk
minimization, neural networks with combinatorial optimization layers, alternating
minimization, Fenchel-Young loss
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1 Introduction
Consider a decision maker whose choice is affected by some random noise ξ ∈ Ξ.
The decision maker does not know ξ when he takes his decision, but has access to
a realization x of a context variable x correlated to ξ. We denote by X the context
space, which means that x takes value in X . Based on a context realization x, the
decision maker takes a decision y in Y(x). To that purpose, he chooses a policy π that
maps a context realization x to a decision y ∈ Y(x). We do not require the policy to
be deterministic and can, therefore, see it as a conditional distribution π(y|x) over
Y(x) given x. Assuming that the policy π has to belong to some hypothesis class H,
our contextual stochastic optimization problem [1] aims at finding a policy π that
minimizes the risk R, which is the expected cost under π.

min
π∈H

R(π) where R(π) = E(x,ξ),y∼π(·|x)
[
c(x, y, ξ)

]
. (1)

The expectation is taken with respect to the distribution over (x, y, ξ) that derives
from the joint distribution over (x, ξ) and the policy π. Since the decision maker does
not have access to ξ, the decision y is independent of ξ given the context x. In many
situations, the noise ξ is observed once the decision has been taken, and the training
set comes from historical data, we thus place ourselves in a learning setting.
Assumption 1. We do not know the joint distribution over (x, ξ). But we have access
to a training set (x1, ξ1), . . . , (xN , ξN ) of independent samples of (x, ξ).

In this work, we focus on the combinatorial case where, for any context realization
x ∈ X , the set of admissible decisions Y(x) is finite but potentially combinatorially
large, as formalized in the following assumption that holds throughout the paper.
Assumption 2. For every possible context x, the set of admissible decisions
Y(x) ⊂ Rd(x) is finite. Further, we assume that Y(x) is the set of exposed vertices of
its convex envelope C(x) = conv (Y(x)), i.e., there are no y ∈ Y(x) is a strict convex
combination of other points in Y(x).

Hence, for any ȳ in Y(x), there exists a θ ∈ Rd(x) such that ȳ is the unique argmax
of maxy∈Y(x)⟨θ|y⟩, which enables to build policies based on linear optimizers.

Stochastic optimization policies.
Using a stochastic optimization approach, one would typically build a policy π by
solving the stochastic optimization problem that arises by taking the conditional
expectation over ξ given x = x.

min
y∈Y(x)

Eξ

[
c(x, y, ξ)

∣∣x = x
]
. (2)

Practical approaches typically solve a sample average approximation of Equation (2).
Decomposition-coordination methods such as progressive hedging [2] solve thousands
of instances of deterministic single scenario problem

min
y∈Y(x)

c
(
x(ω), y, ξ(ω)

)
+ ⟨θ|y⟩, (3)
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where θ is a dual vector, such as a vector of Lagrange multipliers. Our combinatorial and
large dimensional setting brings two challenges. First, we do not know the distribution
over (x, ξ). We may learn a model, but large dimensional x and ξ require a large training
set, which we do not always have in industrial settings. Second, the computational
burden required by such algorithms becomes significant and prevents their application
online in a contextual setting, where the computing time is limited.

Learning approach.
We therefore propose a change of paradigm. We instead define a hypothesis class HW
of policies πw parameterized by w in W. Policies in HW are chosen to be fast enough
to be used online. And we leverage the training set within a learning algorithm that
seeks a policy πw in HW with a low risk R(πw). Practically we solve the empirical
risk minimization problem.

min
w∈W

RN (πw) where RN (πw) := 1
N

N∑
i=1

Ey∼πw(·|xi)

[
c(xi, y, ξi)

]
. (4)

Policies based on a combinatorial optimization layer.
Working with a combinatorial solution space Y(x) makes the choice of π challenging.
Indeed, there are few statistically relevant while computationally tractable models
from a combinatorial set to another. We rely on a combinatorial optimization (CO)
layer to build such policies. We build upon recent contributions [3–6] that derive from
the regularized linear optimization problem

max
y∈C(x)

⟨θ|y⟩ − ΩC(x)(y), (5)

a conditional distribution pΩC(x)(·|θ) on Y(x) (see Section 2.1), where C(x) = conv Y(x).
Here, ΩC(x) : dom(ΩC(x)) → R is a proper convex lower-semicontinuous regularization
function, with C(x) ⊆ cl

(
dom(ΩC(x))

)
. The simplest such regularization is ΩC(x) = 0,

in which case we obtain a Dirac on one of the argmax. This model is parameterized
by θ, the direction of the linear term. In our policies, we use a statistical model φw,
typically a neural network parameterized by w ∈ W ⊆ Rnw to predict θ from the
context x. In other words, we seek policies in the hypothesis class

HW =
{

πw : w ∈ W
}

where πw(y|x) = pΩC(x)

(
y|φw(x)

)
, (6)

where φw : x ∈ X 7→ θ ∈ Rd(x) is a machine learning predictor.

Fenchel-Young losses.
Given the regularized problem (5), the Fenchel-Young loss [3] generated by Ω measures
the difference between the solution y of Equation (5) and a target ȳ ∈ Y(x), as the
non-optimality of the target for this problem. Such a loss is typically convex in θ,
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nonnegative, and equal to 0 if and only if pΩ(·|θ) is a Dirac in ȳ. Fenchel duality enables
to characterize it as the left-hand side of the Fenchel Young inequality

LΩ(θ; y) := Ω∗(θ) + Ω(y) − ⟨θ|y⟩. (7)

During the last few years, they have become the main approach for supervised training
of policies of the form (6) as they lead to a tractable and convex learning problem.
Under some hypotheses, they happen to coincide with Bregman divergences, and are a
key element in our risk minimization algorithm.

Alternating minimization algorithm.
We rely on the following assumption – which is common in (contextual) stochastic
optimization – to derive a tractable alternating minimization algorithm.
Assumption 3. We suppose having a reasonably efficient algorithm to solve the
deterministic single scenario problem (3).

However, instead of using it online, that is once the context x is known, within a
decomposition-coordination algorithm solving the conditional stochastic optimization
problem (2), we use it offline to solve the learning problem (4), which makes the
approach scalable.

Our learning algorithm works as follows. It introduces a surrogate objective

S
(
w, y⊗

)
= 1

N

N∑
i=1

c(xi, yi, ξi) + κL(θi, yi), with
{

θi = φw(xi),
y⊗ = (yi)i∈[N ] ∈ Y⊗,

(8)

where [N ] denotes the set {1, . . . , N}, κ > 0 is a positive constant, and L is a
Fenchel-Young loss and

Y⊗ =
{

(yi)i∈[N ] : yi ∈ Y(xi) for each i
}

.

Our learning algorithm is an alternating minimization algorithm of the form

y
(t+1)
⊗ = argmin

y⊗

S(w(t), y⊗), (Decomposition), (9a)

w(t+1) ∈ argmin
w∈W

S(w, y
(t+1)
⊗ ), (Coordination), (9b)

where y
(t+1)
⊗ = (y(t+1)

i )i∈[N ]. In (9a), we do not write that y⊗ belongs to Y⊗ as
we optimize in practice on a continuous space that contains Y⊗. Indeed, to make
this algorithm practical on combinatorial spaces, we need to work on the space of
distribution over Y(xi), which requires some technical preliminaries. We therefore
postpone the precise definition to Section 2. Suffices to say at this point that Step (9a)
decomposes per scenario and requires solving deterministic single scenario problems of
the form (3), and that the coordination step (9b) amounts to a supervised learning
problem with a Fenchel-Young loss, for which efficient algorithms exist.

4



Related works.
The mirror descent algorithm, introduced by Nemirovsky et al. [7], and analyzed by
Beck and Teboulle [8] and Bubeck [9] to name just a few, aims at solving the following
problem:

min
y∈C

c(y), (10)

where the space C ⊂ Rd is a closed convex set with non-empty interior, the objective
function c is a convex Lipschitz-continuous function with respect to a given norm || · ||,
the set of minimizers is not empty, and subgradients of c can be easily computed. To
do so, it uses a certain mirror map Ψ between the primal space of points y ∈ C and
the dual space of subgradients, that exploits the geometry of Problem (10). Mirror
maps are deeply connected to Legendre-type functions as we discuss in Appendix A.
We discuss the connection between mirror descent and our algorithm in Appendix B.

The stochastic mirror descent algorithm is a variant of mirror descent, adapted
to solve the following kind of problem, which is close to ours, although it is neither
combinatorial nor contextual

min
y∈C

Eξ

[
c(y, ξ)

]
, (11)

where it is assumed that we can easily sample the random variable ξ. It is based on
technical assumptions that vary in the literature. We refer to D’Orazio et al. [10], Zhou
et al. [11] for the details, and to Dang and Lan [12] for its block variant. It has many
applications, notably in deep learning [13], since it extends the popular stochastic
gradient descent. Roughly, at each iteration t of the algorithm, the noise is sampled ξ(t),
and mirror descent updates are applied using an estimator of the subgradient of the
objective function based on ξ(t).

Our approach relies on the work of Léger and Aubin-Frankowski [14] on alternating
minimization algorithms, where a two-variable function ϕ : (Y, Z) 7→ ϕ(y, z) is
iteratively minimized along one of its coordinates while the other is fixed. Starting
from an initial point (y(0), z(0)), the algorithm follows the updates

y(t+1) ∈ argmin
y∈Y

ϕ(y, z(t)),

z(t+1) ∈ argmin
z∈Z

ϕ(y(t+1), z).

The convergence of such algorithms is not a new topic [15], but the wide range
of applications in machine learning and signal processing lead to a revived interest
in the recent years [16]. Generally, the alternating minimization scheme is studied in
a structured context where Y and Z are Euclidean and ϕ is convex. In this setting,
Beck and Tetruashvili [17] were the first to prove a sublinear rate of convergence
when ϕ is assumed L-smooth. In the present case, our function ϕ is neither convex or
L-smooth. A more general setting, without any structural assumption on Y, Z nor
ϕ is studied by Léger and Aubin-Frankowski [14]. They proved the convergence of
the alternating minimization algorithm when ϕ satisfies the five-point property, first
introduced by Csiszár and Tusnády [18], that is a non-local inequality involving ϕ
evaluated at different points. We leverage this literature in Section 4 .
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Contributions and outline.
Our main contribution is to introduce an alternating minimization algorithm for
contextual stochastic combinatorial optimization, which has several nice properties.

1. This algorithm relies on sampling, stochastic gradient descent, and automatic
differentiation to update a model φw, and is therefore deep learning-compatible.

2. It is generic, and can be applied to any setting where assumptions 1-3 hold. It
notably provides a generic algorithm to train policies based on neural networks
with combinatorial optimization layers for contextual stochastic optimization
problems.

3. If the main goal of this algorithm is to learn policies, it can also be applied to
find solutions to stochastic optimization problems. We show in Section 4 that, in
this restricted setting and provided some regularity assumptions, our algorithm
converges linearly in value to the optimum of the surrogate. Provided some
regularity assumptions, we also bound the difference between the empirical risk
of the solution to the surrogate problem and the optimum of the empirical risk,
and thus the non-optimality of the policy returned for the initial problem.

4. Our numerical experiments on the contextual stochastic version of the two-stage
minimum weight spanning tree problem show that our algorithm is practically
efficient and scalable in the size of the statistical model φw, the size N of the
training set, and the dimension of the combinatorial optimization problem. The
limiting factor being the size of the deterministic instances that can be solved in
Equation (3).

The key challenge we face to define practical versions of these algorithms is to develop
regularizations on non-full dimensional polytopes C(x), and on the distribution simplex
over Y(x). They are detailed in Section 3.

5. Based on the work of Berthet et al. [4], we introduce a new sparse regularization
by perturbation on the distribution simplex over Y(x). This new regularization is
perhaps the key element to obtain a tractable and generic learning algorithm for
large combinatorial problems.

6. We highlight several results on Fenchel Young losses [3] on non-full dimensional
polytopes C(x), and on the distribution simplex over Y(x). We analyse their links
with Legendre-type functions, mirror maps and regularizers.

The remainder of the paper is organized as follows. Section 2 provides, without
proof, our main results. More technical sections follow, with Section 3 extending
regularization and introducing a sparse perturbation on the distribution space to suit
our setting, and Section 4 providing some convergence results for the algorithm. Finally,
Section 5 details some numerical experiments.

General notations.
We denote by R the set of real numbers, and by R++ the set of positive real
numbers. Let E be an Euclidean space, and X ⊂ E be a set. We denote by span(X )
the span of X , aff(X ) its affine hull, int(X ) its interior, cl(X ) its closure, bdry(X )
its boundary, and rel int(X ) its relative interior. We introduce IX : E → [−∞, +∞]
the indicator function of the set X , with value 0 over X and +∞ elsewhere. For
two sets X1 and X2, we denote by X1 × X2 their Cartesian product space, and we
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introduce X1 + X2 := {x1 + x2 | x1 ∈ X1, x2 ∈ X2}. When in addition X1 and X2 are
vector subspaces of E, with X1 ∩ X2 = {0}, we have a direct sum written as X1 ⊕ X2.
We extend this notation to S1 ⊕ S2 to denote

{
s1 + s2 : s1 ∈ S1, s2 ∈ S2} given two

subsets S1 and S2 of E (not necessarily vector spaces) such that ⟨s1|s2⟩ = 0 for any
s1 ∈ S1 and s2 ∈ S2.

For E an Euclidean space with inner product ⟨·|·⟩ and associated norm || · ||, we
denote by Γ0(E) the set of proper lower-semicontinuous (l.s.c.) convex functions from
E to (−∞, +∞]. For a function Ψ ∈ Γ0(E), we denote by dom(Ψ) the domain of Ψ, by
argmin Ψ and argmax Ψ the sets of global minimizers and maximizers of Ψ (possibly
empty), by Ψ∗ its Fenchel-conjugate function,

Ψ∗ : E → R
y 7→ supx∈dom(Ψ){⟨x|y⟩ − Ψ(x)},

and by ∂Ψ its subdifferential

∂Ψ : E → 2E

x 7→ {g ∈ E | ∀y ∈ E, ⟨y − x|g⟩ + Ψ(x) ≤ Ψ(y)}.

Let x ∈ E, Ψ is subdifferentiable at x if ∂Ψ(x) ̸= ∅; the elements of ∂Ψ(x) are the
subgradients of Ψ at x. If Ψ is differentiable at x, we name ∇Ψ(x) the gradient of Ψ
at x.

Moment polytope.
Let Y be a finite combinatorial set in Rd, and C = conv(Y) be its convex hull. As
stated above, we assume that no element of Y is a strict convex combination of other
elements of Y . In other words, Y is the set of vertices of the polytope C. We denote by
H = aff(Y) the affine hull of Y, and by V the direction of H, a sub-vector space in
Rd. We have the orthogonal sum Rd = V ⊕ V ⊥, and we denote by ΠV the orthogonal
projection onto V in Rd. We name Y the wide matrix with vectors y ∈ Y as columns.

Distribution polytope.
Let ∆Y := {q ∈ RY , q ≥ 0,

∑
y∈Y qy = 1} be the probability simplex whose vertices

are indexed by Y, and H∆ its affine hull H∆ = aff(∆Y). We denote by V∆ the vector
subspace (hyperplane) in RY that is the direction of H∆. As previously, we rely on the
orthogonal sum RY = V∆ ⊕V ⊥

∆ , where here V ⊥
∆ = span(1). Let θ ∈ Rd be a cost vector

and q ∈ ∆Y be a probability distribution, then sθ = Y ⊤θ ∈ RY is the vector (y⊤θ)y∈Y ,
and µq = Y q =

∑
y qyy = E(y|q) is the moment vector of the random variable y on Y

with distribution q.

2 Main results
We return to the problem of learning structured policies framed in the introduction.
In Section 2.1, we start by defining policies πw, that is to say conditional distributions
over combinatorial spaces. As mentioned in the introduction, we look for the best
policies, i.e., the ones that minimize the empirical risk RN (πw). Our strategy is the
following. In Section 2.1 we precisely define the empirical risk RN (πw) that we would
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like to minimize. We do not face this minimization problem directly, since it is not
easily tractable in practice. Instead, we define a surrogate function SN in Section 2.2,
and an alternating minimization algorithm to solve

min
w∈W,

q⊗∈∆⊗

SN

(
πw, q⊗

)
.

In Section 2.3, we highlight that the alternating minimization algorithm leads to
tractable approximate updates based on decomposition, sampling and stochastic
gradient descent. Then, in Section 2.4, we emphasize that provided some technical
assumptions, the alternating minimization algorithm converges to the optimum value
of the surrogate problem. Last, in a restricted setting and provided some technical
assumptions, we can control the difference between the empirical risk of the surrogate
optimum and the best empirical risk, as depicted in Section 2.5.

2.1 Policies over combinatorial spaces and empirical risk
minimization

We start by a preliminary definition, which is helpful throughout this paper to study
our policies.

Legendre-type functions Rockafellar [19, Section 26]
A function Ψ : Rd → R ∪ {+∞} is Legendre-type if it is strictly convex on int(dom(Ψ))
and essentially smooth, i.e., (i) int(dom(Ψ)) is non-empty; (ii) Ψ is differentiable
through int(dom(Ψ)); (iii) lim

i→∞
||∇Ψ(µi)|| = +∞ for any sequence (µi)i∈N ∈(

int(dom(Ψ))
)N converging to a boundary point of int(dom(Ψ)).

Let Ψ ∈ Γ0(Rd) be a proper convex l.s.c. function with Fenchel conjugate Ψ∗.
Let D := int

(
dom(Ψ)

)
and D∗ := int

(
dom(Ψ∗)

)
. Theorem 26.5 of Rockafellar [19]

states that, Ψ is a convex function of Legendre type if and only if Ψ∗ is a convex
function of Legendre type. When these conditions hold, the gradient mapping ∇Ψ is
one-to-one from the open convex set D onto the open convex set D∗, continuous in
both directions, and ∇Ψ∗ = (∇Ψ)−1. As a consequence, the gradient of Legendre-type
functions can be used as one-to-one mapping from the primal to the dual space.

Mapping scores to distributions.
Recall that ∆Y is the distribution simplex over Y. Let Ω∆Y be a proper l.s.c. convex
function with domain ∆Y whose restriction to H∆ (the affine hull of ∆Y) is Legendre
type. Then

∇Ω∗
∆Y : s ∈ RY 7→ argmax

q∈∆Y
{s⊤q − Ω∆Y (q)}

maps any score vector s ∈ RY to a (unique) probability distribution over Y. We refer
to proposition 7 for Fenchel duality results that underpin this definition.
Example 1 (Entropy). The most classic regularization Ω∆Y is arguably the negentropy
Ω∆Y =

∑
y∈Y qy log(qy) + I∆Y . In that case, ∇Ω∗

∆Y (s) maps the score s to its softmax,
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which is the exponential family on Y parametrized by s

∇Ω∗
∆Y (s) =

( exp(sy)∑
y′∈Y exp(sy′)

)
y∈Y

.

When Y is large, probability computations can become challenging and require
approximations such as variational inference or Markov Chain Monte-Carlo (MCMC)
methods [20].
Example 2 (Sparse perturbation). In Section 3.3, we extend the work of Berthet
et al. [4] and introduce a new regularization function Ω∆Y that we define as
the Fenchel conjugate Ω∆Y := F ∗

ε,∆ of the function Fε,∆ defined over RY as
Fε,∆(s) = E[maxy∈Y sy + εZ⊤y] = E[maxq∈∆Y (s + εY ⊤Z)⊤q] where Z is a random
variable, typically a standard Gaussian. This regularization enjoys convenient properties
that we describe in Section 3.3. In particular,

∇Ω∗
∆Y (s) = ∇Fε,∆(s) = E[argmax

q∈∆Y
(s + εY ⊤Z)⊤q],

enabling to compute stochastic gradients using Monte-Carlo approaches by sampling Z,
which is particularly convenient for our algorithms in Section 2.3.

Policies over combinatorial sets.
A policy maps a context value x ∈ X to a distribution over the corresponding
combinatorial set q ∈ ∆Y(x). To define such policies, we map a context x to the score
space, and then map the score to the distribution space as stated above:

πw(·|x) = argmax
q∈∆Y(x)

{⟨Y (x)⊤
θ∈Rd(x)︷ ︸︸ ︷
φw(x)︸ ︷︷ ︸

s∈R|Y(x)|

|q⟩ − Ω∆Y(x)(q)} = ∇Ω∗
∆Y(x)

(
Y (x)⊤φw(x)

)
,

where we recall that Y (x) = (y)y∈Y(x) is the wide matrix of solutions in Y(x), and
φw : x ∈ Y 7→ θ ∈ Rd(x) is a machine learning predictor. As illustrated on the left-hand
side of Figure 1, an instance x is mapped to a direction vector θ = φw(x), then to the
score space s = Y (x)⊤θ, and finally to a distribution q = ∇Ω∗

∆Y (x)(s). The rest of the
figure is further detailed in Section 3.2. Such a policy depends on the weights w and the
choice of the regularization function Ω∆Y(x) . We do not explicit this second dependency
to alleviate notations, since the a single regularization Ω∆Y(x) is chosen once and for all.

The empirical risk minimization problem.
We come back to the setting described in Section 1, and denote by (x, ξ) a context-noise
pair observation. Recall that we have access to a dataset (x1, ξ1), . . . (xN , ξN ) of such
pairs. Our goal is to find w values that lead to low empirical risk RN (πw).

min
w∈W

RN (πw) = min
w∈W

1
N

N∑
i=1

Ey∼πw(·|xi)

[
c(xi, y, ξi)

]
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s ∈ R|Y(x)| q ∈ ∆Y(x)

θ ∈ Rd(x) µ ∈ C(x)ML layers
φw

∇Ω∗
∆(x)(s)

∂Ω∆(x)(q)

∇Ω∗
C(x)(θ)

∂ΩC(x)(µ)

Y (x)⊤θ Y (x)q

x φw(x)

∆Y

RY

y1 y2

y3

q
sθ

γ

sθ ∈ ∂Ω∆(q)

q = ∇Ω∗
∆(sθ)

Fig. 1: Policies over combinatorial spaces leveraging Fenchel duality.

With the Ω∆ previously introduced, the empirical risk is differentiable with respect to
w, and stochastic gradients can be computed using score function estimators [21]. We
could therefore directly minimize the empirical risk using stochastic gradient descent
(SGD). This SGD performs poorly as the score function estimator suffers from a
high variance, and RN is highly non-convex as it is a smoothed piecewise constant
function [22]. We therefore follow a different approach based on (less noisy) pathwise
estimators for gradients and a convexified problem.

To that purpose, we reformulate the empirical risk minimization as a linear problem
on the distribution space. Let γ(x, ξ) =

(
c(x, y, ξ)

)
y∈Y(x) ∈ R|Y(x)| be the score vector

induced by the cost function c(x, ·, ξ) on the (finite) combinatorial space Y(x). The
right-hand side of Figure 1 highlights that γ (in orange) does not belong to the image
of Y (x)⊤ (pink line) in general. Given a distribution q ∈ ∆Y on Y, let us define
R∆(q; x, ξ) as the expected cost under q. We can recast it as

R∆(q; x, ξ) = Ey∼q

[
c(x, y, ξ)

]
= ⟨γ(x, ξ)|q⟩.

Using the shortened notation γi for γ(xi, ξi), we can rewrite the empirical risk as

RN (πw) = 1
N

N∑
i=1

Ey∼πw(·|xi)

[
c(xi, y, ξi)

]

= 1
N

N∑
i=1

R∆
(

∇Ω∗
∆Y(xi)

( si︷ ︸︸ ︷
Y (xi)⊤φw(xi)

)︸ ︷︷ ︸
πw(·|xi)

, wi, ξi

)

We rewrite the risk R∆,N as a function of the score s⊗ on the following product space

S⊗ = {s⊗ = (si)i∈[N ] | ∀i ∈ [N ], si ∈ R|Y(xi)|}, (13a)
∆⊗ = {q⊗ = (qi)i∈[N ] | ∀i ∈ [N ], qi ∈ ∆Y(xi)}, (13b)

R∆,N (s⊗) = 1
N

N∑
i=1

R∆(∇Ω∗
∆Y(xi)(si); xi, ξi) where s⊗ ∈ S⊗. (13c)
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The expression of RN (πw) above enables to rewrite the empirical risk minimization
problem (4) as

min
w∈W

RN (πw) = min
w∈W

R∆,N

((
Y (xi)⊤φw(xi)

)
i∈[N ]

)
. (14)

2.2 Surrogate problem and alternating minimization algorithm
We recall that the Fenchel-Young loss generated by Ω∆Y(x) is defined over
R|Y(x)| × ∆Y(x), and written as LΩ∆(x)(s; q) = Ω∆Y(x)(q) + Ω∗

∆Y(x)(s) − ⟨s|q⟩. Let κ > 0
be a positive constant, we introduce the surrogate functions

SΩ∆(s, q; x, ξ) = ⟨γ(x, ξ)|q⟩ + κLΩ∆(x)(s; q), γ(x, ξ) =
(
c(x, y, ξ)

)
y∈Y(x), (15a)

SΩ∆,N (s⊗, q⊗) = 1
N

N∑
i=1

SΩ∆(si, qi; xi, ξi), s⊗ = (si)i∈[N ], q⊗ = (qi)i∈[N ]. (15b)

Notice that if SΩ∆(·, ·; x, ξ) defined in Equation (15a) takes as inputs s ∈ R|Y(x)| and its
dual variable q = ∇Ω∗

∆Y(x)(s), by Fenchel duality, the Fenchel-Young loss reaches zero,
and we recover the expected cost. In general, we have the Fenchel-Young inequality.

SΩ∆(s, ∇Ω∗
∆Y(x)(s); x, ξ) = R∆

(
∇Ω∗

∆Y(x)(s); x, ξ
)
, (16a)

SΩ∆(s, q; x, ξ) = R∆(q; x, ξ
)

+ κ LΩ∆(x)(s; q)︸ ︷︷ ︸
≥0

. (16b)

This is why we use the term surrogate functions for Equation (15). Our surrogate
learning problem can then be written as

min
w∈W,

q⊗∈∆⊗

SΩ∆,N

((
Y (xi)⊤φw(xi)

)
i∈[N ], q⊗

)
︸ ︷︷ ︸
= 1

N

∑N

i=1
SΩ∆

(
Y (xi)⊤φw(xi),qi;xi,ξi

) . (17)

In order to derive solutions to Equation (17), we rely on the following primal-dual
alternating minimization scheme, initialized by some weights values w̄(0)

q
(t+1)
⊗ = argmin

q⊗∈∆⊗

SΩ∆,N

((
Y (xi)⊤φw̄(t)(xi)

)
i∈[N ], q⊗

)
, (decomposition), (18a)

w̄(t+1) ∈ argmin
w∈W

SΩ∆,N

((
Y (xi)⊤φw(xi)

)
i∈[N ], q

(t+1)
⊗

)
, (coordination). (18b)

The primal update in Equation (18a) is also named decomposition step, since the
minimization can be done per term i and variable qi as we highlight below. The dual
update in Equation (18b) is named coordination, because this time a single vector
of weights is used, coupling the N terms of the sum in SΩ∆,N , and coordinating the
primal updates. As we discuss below, it corresponds to a simple supervised learning
problem with a Fenchel-Young loss.
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2.3 Tractable updates for the surrogate problem
We come back to the primal-dual algorithm given in Equation (18), and exploit the
structure of the surrogate function SΩ∆,N to study the tractability of each step.
Proposition 1. Using the notations of Section 2.2, Equations (18a)-(18b) can be recast
as

q
(t+1)
i = argmin

qi∈∆Y(xi)
SΩ∆

(
Y (xi)⊤φw̄(t)(xi), qi; xi, ξi

)
, (19a)

= ∇Ω∗
∆Y(xi)

(
Y (xi)⊤φw̄(t)(xi) − 1

κ
γi

)
, (19b)

w̄(t+1) ∈ argmin
w∈W

1
N

N∑
i=1

LΩC(xi)

(
φw(xi); Y (xi)q(t+1)

i

)
, (19c)

where LΩC(x) is the Fenchel-Young loss on the moment polytope C(x) = conv(Y(x))
generated by

ΩC(x)(µ) := min
q∈∆Y(x)

{Ω∆Y(x)(q) | Y (x)q = µ}. (20)

The dual update in Equation (19c) corresponds to a supervised learning problem
with a Fenchel-Young loss, using as learning dataset

(
xi, Y (xi)q(t+1)

i

)
i∈[N ], where

each target point Y (xi)q(t+1)
i belongs to the corresponding convex compact set C(xi).

This update can thus be computed in the tractable dimension of the moment
polytope. Nonetheless, the way we can evaluate the regularization function in small
dimension ΩC(x) is still unclear. Besides, the primal update written as Equation (19b)
requires working with distributions. Ideally, we would like to do all the computations
in the space Y(x) of small-dimension. We highlight below how we can do so for the
negentropy and the sparse perturbation.

The case of negentropy.
The negentropy introduced in Example 1. leads to the exponential family

Proposition 2.

µt+1
i = E(y|Y ⊤

i φw̄(t) − 1
κ

γi) (21a)

w̄(t+1) = argmin
w

N∑
i=1

AC(φw(xi)) − ⟨φw(xi)|µ(t+1)
i ⟩ (21b)

While the expectation is in general not tractable, it can be computed for instance
using a MCMC approach. To avoid having to design such MCMC, in our numerical
experiments, we rely on the sparse perturbation regularization.

12



The case of sparse perturbation.
The sparse perturbation is introduced in Example 2, and further detailed in Section 3.3.
We show how we can leverage its structure to derive tractable updates in the small
dimension of the polytope C(x).
Proposition 3. Let ε > 0 be a positive constant. In the case the regularization
functions ΩC(x) and Ω∆Y(x) are defined as the Fenchel conjugates of the perturbed
maxima ΩC(x) := F ∗

ε,C(x) and Ω∆Y(x) := F ∗
ε,∆(x) introduced in Equations (35)-(36), the

primal-dual updates in Equations (19b)-(19c) become

µ
(t+1)
i = EZ

[
argmin
yi∈Y(xi)

c(xi, yi, ξi) − (φw̄(t)(xi) + εZ)⊤yi

]
, (22a)

w̄(t+1) ∈ argmin
w

1
N

N∑
i=1

Fε,C(xi)
(
φw(xi)

)
− ⟨φw(xi)|µ(t+1)

i ⟩, (22b)

where, given the primal update in Equation (19b), the moment primal variables µ
(t+1)
i

correspond to µ
(t+1)
i = Y (xi)q(t+1)

i , and can be seen as expectations under the
distributions q

(t+1)
i . They belong to the convex compact sets C(xi).

As mentioned above, the dual update in Equation (22b) corresponds to a supervised
learning problem on a dataset made of

(
xi, µ

(t+1)
i

)
i∈[N ]. In practice, it is approximately

solved using stochastic gradient descent, with Monte-Carlo estimates and sampling
Z. The details are derived by Berthet et al. [4]. The primal update in Equation (22a)
has now a convenient expression. Indeed, we recall that in Section 1, we assume
that we have access to an efficient algorithm to solve Equation (3). We can therefore
leverage the latter to derive Monte-Carlo estimates of the µi, again by sampling the
random variable Z. Instead of the distribution variables qi, our primal-dual algorithm
in Equation (22) now only relies on the moment variables µi. Although these variables
belong to the convex hulls of the combinatorial sets C(xi) = conv(Y(xi)), the updates
in Equation (22) only require to call the cost function c at points that belong to the
combinatorial sets Y(xi). This is particularly useful when this cost function cannot be
directly applied to points in the convex hulls, which happens quite often in operations
research.

2.4 Convergence to surrogate problem optimum
In this section, we place ourselves in the setting of (non-contextual) stochastic
optimization. Therefore, we can drop x from the notations for the sets Y, C, ∆Y , RY ,
and regularization functions Ω∆ and ΩC . We focus on a special case of our primal-dual
algorithm where the dual update minimizes directly on the score vector, instead of
the weights w of a machine learning predictor Y ⊤φw. Then, we will show that the
following special case of Algorithm (18)

q
(t+1)
⊗ = argmin

q⊗∈∆⊗

SΩ∆,N

(
s̄

(t)
⊗ , q⊗

)
, (decomposition), (23a)
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s̄
(t+1)
⊗ ∈ argmin

s⊗∈S̄⊗

SΩ∆,N

(
s⊗, q

(t+1)
⊗

)
, (coordination), (23b)

converges with a linear rate toward the global minimum of SΩ∆,N , provided some
regularity assumption on the regularizer Ω∆. Detailed proofs of the results presented
in this section are postponed to Section 4.

Before presenting the main result, let us introduce the partial minimizer of the
surrogate function SΩ∆,N introduced in Equation (15b) as

S̄Ω∆,N (q⊗) := min
s⊗∈S̄⊗

SΩ∆,N (s⊗, q⊗), (24)

where S̄⊗ = {(si)i∈[N ] ∈ (RY)N | s1 = . . . = sN }. This function is a key object to our
convergence analysis. Surprisingly, it relates to the Jensen gap of the Ω∆ according to
Lemma 15.
Lemma 4. Let q⊗ = (qi)i∈[N ] ∈ ∆⊗, the function S̄Ω∆,N defined above is equal to

S̄Ω∆,N (q⊗) = 1
N

N∑
i=1

⟨γi|qi⟩ + κ

N

[ N∑
i=1

Ω∆(qi) − NΩ∆( 1
N

N∑
i=1

qi)
]
.

We refer to this function as the Jensen gap of Ω∆.

Convergence of the algorithm
We establish convergence rates for (23) in the following theorem.
Theorem 5. Suppose that the Jensen gap of Ω∆ is a convex function. Then, the
iterates of (23) converge in value toward the global minimum of the surrogate problem
S̄Ω∆,N over (RY , ∆⊗) with a rate O( 1

n ).
This result relies on the convexity of the Jensen gap of the regularizer Ω∆, which

is far from straightforward. In Appendix C we settle the issue for a class of separable
regularizers encompassing the ℓ2 norm and negentropy, proving the converge of
Algorithm (23) in these cases. The convexity of the Jensen gap when regularizing via
random perturbation remains an open question.

In the general case of Algorithm (18), the coordination step is parametrized by a
machine learning predictor Y ⊤φw with weights w. The convergence is, in this case,
related to the convexity of a “cross”Jensen gap function

q⊗ 7→
N∑

i=1
Ω∆(qi) − NΩC

(
Y

1
N

N∑
j=1

qi

)
(25)

that involves regularizers in both the moment and distribution spaces. The study
of the cross Jensen gap (25) is left for future research.

Relationship to mirror descent
From a geometrical standpoint, our primal-dual algorithm can be interpreted as a
mirror descent algorithm applied to a specific function. We show in Appendix B
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that, when adding a damping step on the dual update, the primal updates q⊗ of
Algorithm (41) coincide with the ones of mirror descent applied to S̄Ω∆,N . This result
provides an alternative proof of convergence, albeit with stronger assumptions. In
particular, it relies on the gradients of S̄Ω∆,N being Lipschitz-continuous, which is, at
first sight, conflicting with the hypothesizes we make on the regularizer Ω∆.

2.5 Empirical risk of the surrogate optimum
We have shown in the previous section that, under some regularity assumptions, the
primal dual algorithm converges toward the minimum of the surrogate problem (18).
The natural question that comes next concerns the quality of the returned solution
for the original problem (4), and thus the pertinence of the surrogate itself. In this
section, we exhibit a performance guarantee on the solution returned by the primal-dual
algorithm for the empirical risk minimization problem.

We place ourselves in the setting of (non-contextual) stochastic optimization, we
can then drop the context from the sets and functions notations. First, let us introduce
the other partial minimizer of the surrogate risk as

SΩ∆,N (θ) := min
q⊗∈∆⊗

SΩ∆,N

(
(Y ⊤θ)i∈[N ], q⊗

)
, (26)

where θ ∈ Rd is a vector in small dimension, and (Y ⊤θ)i∈[N ] is a collection of N

identical vectors, all equal to Y ⊤θ ∈ RY , in large dimension. We derive the following
bounds.
Theorem 6. Let θ ∈ Rd be a vector, and RN (θ) := R∆,N

(
(Y ⊤θ)i∈[N ]

)
be the empirical

risk in the stochastic optimization setting. Provided that Ω∆ is L-strongly convex, which
means ∇Ω∗

∆ is 1
L -Lipschitz-continuous with respect to || · ||, the absolute difference

between the empirical risk and surrogate is bounded as

|SΩ∆,N (θ) − RN (θ)| ≤ 3
2NLκ

N∑
i=1

||γi||2. (27)

From this inequality, we deduce a bound on the non-optimality of the solution to the
surrogate problem. Let θS ∈ argminθ SΩ∆,N (θ) and θR ∈ argminθ RN (θ), provided that
Ω∆ is L-strongly convex, which means ∇Ω∗

∆ is 1
L -Lipschitz-continuous with respect to

|| · ||,

RN (θS) − RN (θR) ≤ 3
LκN

N∑
i=1

||γi||2. (28)

The proof of Theorem 6 is postponed to Appendix D. The main assumption of
Theorem 6 is the strong convexity of Ω∆. This assumption holds, for instance, when
regularizing with the ℓ2-norm or the negentropy.
Remark 1. The recent work of Aubin-Frankowski et al. [23] studies the extension of
generalization bounds to the structured learning paradigm. Our paper falls under the
scope of their study and, under mild assumptions, the application of [23, Theorem 3]
allows us to bound the (true) risk of the surrogate optimum.
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3 Regularization and sparse perturbation on the
distribution space

To study the convergence and tractability of our algorithm, we rely on a regularization
on the distribution space ∆Y . The theory of Fenchel-Young losses has been introduced
by the structured learning community [3]. Most applications in this literature are
based on linear optimization layers on the polytope C = conv(Y). Ranking or top-k
applications fall, for instance, within this scope. If some theory covers the case of
non-full dimensional C [3], some important approaches for us have been studied only
in the linear and full dimensional case [4]. In operations research, a broader class of
problems may be considered as layers. The objective function may be non-linear, and
the combinatorial space Y may not be easily reduced to a (continuous) polytope.

Our main contribution in this direction is the introduction of regularization based
on a sparse perturbation on that space. An essential and technical contribution for
our approach is to make links between the moment C and the distribution ∆Y spaces.
In more technical terms, one must consider the case when regularization functions are
defined on non-full-dimensional spaces. The reader can thus safely skip Section 3.1 in a
first read. Proposition 9 makes a link between the moment and distribution polytopes.
Section 3.3 contains our main results on sparse perturbation.

Let Ω ∈ Γ0(Rd) be a proper l.s.c. convex function mapping Rd to (−∞, +∞]. In
this section, we consider the regularized prediction problem defined as

ŷΩ(θ) ∈ argmax
µ∈dom(Ω)

⟨θ|µ⟩ − Ω(µ), (29)

and introduce some new geometric results related to it, which are useful for the study
of our algorithm.

3.1 Regularized prediction on non-full-dimensional spaces
To the best of our knowledge, most of the theory of Fenchel-Young losses has been made
either introducing a regularization function Ω where dom(Ω) = C is full-dimensional,
and Ω is Legendre-type, or using a decomposition Ω := Ψ+IC , where Ψ is Legendre-type.
In many applications in operations research, we consider polytopes C that are not
full dimensional (take the simplex as a case in point). When defining Ω directly
on the polytope (using a perturbation as in Berthet et al. [4] for instance), the
decomposition Ω := Ψ + IC is not given. Therefore, when the polytope is not full
dimensional, we do not have access to a Legendre-type function. Instead, we have at
our disposal a C-regularizer (see Appendix A for the precise definition). The following
proposition extend classic results of Legendre-type function to function with non-full
dimensional domain C whose restriction to the affine hull of C is Legendre-type.
Proposition 7. Let C ⊂ Rd be a non-empty convex compact set. We consider a proper
l.s.c. convex regularization function Ω ∈ Γ0(Rd) with domain dom(Ω) = C. We assume
that the restriction of Ω to H = aff(C), denoted as Ω|H , is Legendre-type (with respect
to the metric of H, and not the one of Rd).
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We denote by V the direction of H in Rd, and we have the orthogonal sum
Rd = V ⊕ V ⊥. We introduce ΠV , the linear orthogonal projection onto V in Rd. We
have the following results:

1. The Fenchel conjugate of Ω, has full domain, i.e., dom(Ω∗) = Rd. Therefore, Ω
is a C-regularizer. Further, the function Ω∗ is differentiable over Rd, and we have
the property:

∇Ω∗(∂Ω(y)) = y, ∀y ∈ rel int(C). (30)
2. Let θ ∈ Rd, decomposed as θ = θV + θV ⊥ , where θV = ΠV (θ) and θV ⊥ = θ − θV ,

and y0 ∈ C be any point in C. The Fenchel conjugate of Ω, denoted as Ω∗, has an
affine component over V ⊥:

Ω∗(θ) = Ω∗(θV ) + ⟨θV ⊥ |y0⟩. (31)

3. Let y ∈ H, the subdifferential of Ω at y is given by:

∂Ω(y) = ∂(Ω|H)(y) + V ⊥, (32)

where we have omitted the canonical injection from H to Rd for notational
simplicity. In particular, for y ∈ rel int(dom(Ω)), we have:

∂Ω(y) = {∇Ω|H(y)} + V ⊥. (33)

We illustrate Proposition 7 in Figure 2, in the case d = 3, H is an affine hyperplane,
and V ⊥ a straight line. Arrows represent the links between primal and dual variables,
involving the subdifferential of Ω and the gradient of Ω∗. The proof relies on classic
convex duality results and provided in Appendix E for completeness.

V ⊥

y

V

H C

V ⊥

θ

∇Ω|H(y)

θ ∈ ∂Ω(y)

∂Ω(y)

y = ∇Ω∗(θ)

V

Fig. 2: Primal-dual maps for non-full-dimensional dom(Ω).

We now show that any Ω satisfying the assumption of Proposition 7, can be written
as Ω = Ψ + IC for some Legendre-type function Ψ.
Proposition 8. Let C ⊂ Rd be a convex compact set, and Ω be a proper l.s.c.
convex regularization function in Γ0(Rd), with domain dom(Ω) = C. We assume
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that the restriction of Ω to H = aff(C) is Legendre-type (with respect to the metric
of H). Then, there exists a Legendre-type function Ψ, with C ⊂ cl

(
int(dom(Ψ))

)
,

int(dom(Ψ)) ∩ C ̸= ∅, and such that

Ω = Ψ + IC , and dom(Ψ∗) = Rd.

Besides, let V be the direction of H in Rd, we have the direct sum Rd = V ⊕ V ⊥. Given
a vector θ ∈ Rd, there exists a vector z ∈ V ⊥ such that

∇Ψ
(
∇Ω∗(θ)

)
= θ + z.

This result can be seen as the converse, in a restricted setting (with more
assumptions on Ω), of a proposition by Juditsky et al. [24, Proposition 2.11], where
given a C-compatible mirror map (see Appendix A) Ψ, a C-regularizer Ω is defined as
Ω := Ψ + IC. Indeed, we know with Proposition 7 that Ω defined in the preamble of
Proposition 8 is (in particular) a C-regularizer. We use Proposition 8 in Appendix B to
study some links between our primal-dual algorithms and mirror descent. The proof is
provided in Appendix E.

3.2 Regularizing in the distribution space
Until now in this section, the Fenchel-Young loss has only been introduced in the
context of the regularization (see Equation (29)) of a linear optimization problem
maxµ∈C⟨θ|µ⟩. However, to deal with arbitrary minimization problems

min
y∈Y

c(y),

on a finite but combinatorial set Y, it is convenient to consider regularization
on distributions. The proposition below explores regularization on the distribution
polytope. We recall that notations are introduced at the end of Section 1.
Proposition 9. Let Ω∆Y ∈ Γ0(RY) be a proper l.s.c. convex function with domain
∆Y . We drop the Y in the notation Ω∆ when Y is clear from context. We assume that
the restriction of Ω∆ to H∆, denoted as Ω∆|H∆ is Legendre-type (with respect to the
metric of H∆, and not the one of RY). For µ ∈ C, we define

ΩC(µ) := min{Ω∆(q) : Y q = µ}. (34)

Let θ ∈ Rd and q ∈ ∆Y , we have the following properties:
1. ⟨sθ|q⟩ = ⟨Y ⊤θ|q⟩ = θ⊤Y q = ⟨θ|Y q⟩ = θ⊤µq.
2. Ω∗

C(θ) = Ω∗
∆(Y ⊤θ), therefore Ω∗

C has domain dom(Ω∗
C) = Rd, it is differentiable

over its domain and affine over V ⊥.
3. Ω∆(q) ≥ ΩC(µq) and LΩ∆(sθ; q) ≥ LΩC (θ; µq), both with equality if and only if

q = argmin
q′∈∆Y : Y q′=µq

Ω∆(q′).
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4. min
θ′

LΩ∆(sθ′ ; q) ≥ min
θ′

LΩC (θ′; µq), with equality if and only if
q = argmin

q′∈∆Y : Y q′=µq

Ω∆(q′).

5. ∇θLΩ∆(sθ; q) = ∇θLΩC (θ; µq) = Y (∇Ω∗
∆(sθ) − q) = ∇Ω∗

C(θ) − µq.
This notion of regularization on distributions, and the way it induces a regularization

on the moment space have already been introduced by Blondel et al. [3, Section 7.1],
but in the case of Ω∆ being a generalized entropy [25].

Proof. 1. Immediate.
2. By definition,

Ω∗
C(θ) = max

µ

(
θ⊤µ+ max

q : Y q=µ
−Ω(q)

)
= max

µ,q : µ=Y q
θ⊤µ︸︷︷︸
s⊤

θ
q

−Ω(q) = max
q

s⊤
θ q−Ω(q) = Ω∗

∆(sθ).

Applying Proposition 7.1 to Ω∆, we get that dom(Ω∆) = RY , and it is
differentiable over RY . Composing with a linear map gives the domain and
differentiability results. Applying Proposition 7.2 to Ω∗

∆ with V ⊥
∆ = span(1), we

have Ω∗
∆ affine over span(1). Besides,

sθ ∈ span(1) ⇐⇒ ∃α ∈ R, ∀y ∈ Y, ⟨θ|y⟩ = α ⇐⇒ θ ∈ V ⊥.

3. An immediate consequence of the definition of ΩC and the previous points.
4. It follows from properties 1 and 2 that the two minimization problems are

equivalent up to a constant.
5. Consequence of the equality of the losses up to a constant that does not depend

on θ.

3.3 Structured perturbation
We use the notations defined in Section 1 for both the variable and distribution spaces.
Explicitly defining a proper l.s.c. convex regularization function Ω ∈ Γ0(Rd) with
domain dom(Ω) = C, and computing the regularized predictions ŷΩ(θ) defined in
Equation (29) can be challenging. It may rely on Frank-Wolfe [26] algorithm in practice.
We follow another approach pioneered by Berthet et al. [4], defining instead Ω∗

C and
Ω∗

∆ directly. More precisely, let ε ∈ R++, we introduce:

Fε,C(θ) = E[max
y∈Y

(θ + εZ)⊤y] = E[max
y∈C

(θ + εZ)⊤y], (35)

Fε,∆(s) = E[max
y∈Y

s(y) + εZ⊤y] = E[max
q∈∆Y

(s + εY ⊤Z)⊤q], (36)

where Z is a centred random variable on Rd from an exponential family with positive
density, typically a standard multivariate normal distribution. The perturbed linear
program in Equation (35) is introduced by Berthet et al. [4], while Equation (36) is
new to the best of our knowledge. We denote by Ωε,C and Ωε,∆ their respective Fenchel
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conjugates. We extend from the work of Berthet et al. [4, Proposition 2.2] the following
properties for Fε,C to the case when C is not full-dimensional.
Proposition 10. Let ε ∈ R++, the function Fε,C defined above has the following
properties:

1. The domain of Fε,C is Rd, and Fε,C is a proper l.s.c. convex function in Γ0(Rd).
2. Fε,C is strictly convex over V , and affine over V ⊥. Let θ ∈ Rd, such that

θ = θV + θV ⊥ , where θV = ΠV (θ) and θV ⊥ = θ − θV , and y0 ∈ C be any point in
C,

Fε,C(θ) = ⟨y0|θV ⊥⟩ + Fε,C(θV ).
3. Fε,C is twice differentiable, with gradient given by:

∇θFε,C(θ) = E[argmax
y∈C

(θ + εZ)⊤y]. (37)

4. The Fenchel conjugate Ωε,C := F ∗
ε,C has domain C, and its restriction to H is a

Legendre-type function.
Contrary to the full dimension case considered by Berthet et al. [4], Fε,C is not

strictly convex over the whole space Rd. Therefore, it is not a Legendre-type function,
but its restriction to V is. Besides, its conjugate is not Legendre-type, but the restriction
of its conjugate to the affine subspace H is.

Proof. Let ε ∈ R++,
1. Let (θ, Z) ∈ (Rd)2, since C is compact, the maximum in the definition (35) of Fε,C

is well-defined. The expectation with respect to the Gaussian distribution remains
finite, and thus dom(Fε,C) = Rd. Let Z ∈ Rd, the function θ 7→ maxy∈C(θ+εZ)⊤y
is convex since it is the maximum of affine functions in θ. Since the distribution
of Z is non-negative and the expectation linear, Fε,C is convex. It is proper since
dom(Fε,C) = Rd and C is not degenerate. We show in point 3 that Fε,C is twice
differentiable, it is therefore lower-semicontinuous and Fε,C is a proper l.s.c. convex
function in Γ0(Rd).

2. The strict convexity of Fε,C over V stems directly from the proof of Proposition
2.2 in the appendix of the study by Berthet et al. [4]. Let now θ = θV + θV ⊥ be
any vector in Rd, and y0 be any vector in C,

Fε,C(θ) = E[max
y∈C

(θV + θV ⊥ + εZ)⊤y] = E[θ⊤
V ⊥y0 + max

y∈C
(θV + εZ)⊤y],

= θ⊤
V ⊥y0 + Fε,C(θV ).

Therefore Fε,C is affine over V ⊥.
3. As highlighted by Berthet et al. [4, Proposition 3.1], we can apply the technique

of Abernethy et al. [27, Lemma 1.5] using the smoothness of the distribution of
the noise variable Z to show the smoothness of Fε,C . It involves a simple change
of variable u = θ + εZ. The expression of the gradient comes from Danskin’s
lemma and swap of integration and differentiation.
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4. We first show that the domain of F ∗
ε,C is C. Let y ∈ Rd, by definition

F ∗
ε,C(y) = sup

θ∈Rd

{θ⊤y − E[max
y′∈C

(θ + εZ)⊤y′]}.

• If y ∈ Rd\C, we can apply the hyperplane separation theorem given
by Rockafellar [19, Corollary 11.4.2] to {y} and C which are both closed,
convex and bounded. There exists a vector θ̄ ∈ Rd, and a positive real number
η ∈ R++ such that,

⟨θ̄|y − y′⟩ ≥ η, ∀y′ ∈ C.

Let now Z ∈ Rd be any realization of our random vector, and λ ∈ R++ a
positive scalar,

⟨λθ̄ + εZ|y − y′⟩ ≥ λη + ⟨εZ|y − y′⟩, ∀y′ ∈ C,

≥ λη − |⟨εZ|y − y′⟩|, ∀y′ ∈ C,

≥ λη − ||εZ||||y − y′||, ∀y′ ∈ C.

For the last line we apply Cauchy-Schwarz inequality. Since C is compact in
Rd, we can consider DC,y := supy′∈C ||y − y′|| < +∞.

⟨λθ̄ + εZ|y − y′⟩ ≥ λη − ||εZ||DC,y, ∀y′ ∈ C.

Considering the minimum of the left-hand side with respect to y′ ∈ C,

⟨λθ̄ + εZ|y⟩ − max
y′∈C

⟨λθ̄ + εZ|y′⟩ ≥ λη − ||εZ||DC,y.

Now, we recall that Z is centered with distribution ν (typically a
multivariate standard normal distribution) with finite variance, therefore

Nν := EZ∼ν [||Z||] < +∞, and E[||εZ||] = |ε|Nν < +∞.

Taking the expectation with respect to ν of the inequality above,

⟨λθ̄|y⟩ − E[max
y′∈C

⟨λθ̄ + εZ|y′⟩] ≥ λη − |ε|NνDC,y.

Therefore, since F ∗
ε,C(y) ≥ ⟨λθ̄|y⟩ − E[maxy′∈C⟨λθ̄ + εZ|y′⟩] and |ε|NνDC,y

is finite and does not depend on λ, considering the limit λ → +∞ gives us
F ∗

ε,C(y) = +∞.
• If y ∈ C, since Z is centered,

F ∗
ε,C(y) = sup

θ∈Rd

{θ⊤y − E[max
y′∈C

(θ + εZ)⊤y′]},

= sup
θ∈Rd

{E[(θ + εZ)⊤y] − E[max
y′∈C

(θ + εZ)⊤y′]},
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= sup
θ∈Rd

{E[(θ + εZ)⊤y − max
y′∈C

(θ + εZ)⊤y′︸ ︷︷ ︸
≤0 since y∈C

]} < +∞.

Therefore, we have shown that dom(F ∗
ε,C) = C. The point 2. shows that (Fε,C)|V is

strictly convex over V . Using the computations of point 3., we show that (Fε,C)|V is
differentiable over V . It is thus a Legendre-type function with dom

(
(Fε,C)|V

)
= V .

Indeed, point 3 of the essentially smooth definition holds vacuously. To show
that (F ∗

ε,C)|H is Legendre-type, we use the fact that it is the conjugate (up to a
translation) of (Fε,C)|V in V . Then, Theorem ?? shows that (F ∗

ε,C)|H with domain
C is a Legendre-type function (with respect to the metric of H).

This concludes the proof.

The perturbation in the definition of Fε,∆ spans Im(Y ⊤), which is a subspace of
dimension d′ ≪ |Y|. The proofs of Berthet et al. [4], therefore, do not stand any more.
However, perhaps surprisingly, many properties remain valid.
Theorem 11. Let ε ∈ R++, the function Fε,∆ defined above has the following
properties:

1. The domain of Fε,∆ is RY , it is Lipschitz continuous, and it is a proper l.s.c.
convex function in Γ0(RY).

2. Fε,∆ is strictly convex over V∆, and affine over V ⊥
∆ = span(1). More precisely, let

s ∈ RY , decomposed as s = sV∆ + sV ⊥
∆

, where sV∆ = ΠV∆(s) and sV ⊥
∆

= s − sV∆ ,
and q0 ∈ ∆Y be any point in ∆Y ,

Fε,∆(s) = ⟨sV ⊥
∆

|q0⟩ + Fε,∆(sV∆).

3. Fε,∆ is differentiable over RY , with gradient given by:

∇sFε,∆(s) = E[argmax
q∈∆Y

(s + εY ⊤Z)⊤q]. (38)

4. The Fenchel conjugate Ωε,∆ := F ∗
ε,∆ has domain ∆Y , and its restriction to H∆ is

Legendre-type.
In the definition of Fε,∆, the noise Y ⊤Z follows a degenerate multivariate Gaussian

distribution. Therefore, the change of variable in the paper by Abernethy et al. [27]
cannot be applied to show smoothness. Besides, the proof of strict convexity by Berthet
et al. [4] does not hold either. We use alternative approaches in the proof.

Proof. 1. The domain of F∆, as well as the fact that it is proper and convex, are
proved in the same way as in Proposition 10 point 1. We now show the Lipschitz
continuity, and the lower-semicontinuity follows.

Let (s1, s2) ∈ RY ,

F∆(s1) − F∆(s2) = EZ
[

max
q∈∆Y

⟨s1 + εY ⊤Z|q⟩ − max
q∈∆Y

⟨s2 + εY ⊤Z|q⟩
]
,
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≤ EZ
[

max
q∈∆Y

⟨s1 − s2|q⟩
]

= max
q∈∆Y

⟨s1 − s2|q⟩,

≤ max
q∈∆Y

||s1 − s2||||q|| = ||s1 − s2||.

We use, in turn, the fact that the maximum of a sum is smaller or equal to the
sum of maxima, the non-negativity of the density of Z, Cauchy-Schwarz inequality,
and the definition of the simplex ∆Y . By symmetry, we have shown that F∆ is
1-Lipschitz continuous.

2. The proof relies on the following technical lemma provided in Appendix E.
Lemma 12. Let Y ⊂ Rd be a finite set. We make the assumption that no element
of Y is a strict convex combination of other elements of Y. In other words, Y
is the set of vertices of the polytope C = conv(Y). Let ∆Y be the probability
simplex whose vertices are indexed by Y, and H∆ its affine hull H∆ = aff(∆Y).
We denote by V∆ the vector subspace of RY which is the direction of H∆, and we
have the orthogonal sum RY = V∆ ⊕ span(1). For any vector s ∈ RY , we denote
by s(y) ∈ R the component of s indexed by y ∈ Y. We also consider ε ∈ R++
a positive real number, and Z, a random variable with standard multivariate
Gaussian distribution over Rd.

Then, for two vectors (s1, s2) ∈ (V∆)2, s1 ̸= s2,

PZ

(
argmax

y∈Y
f1(y; Z) ∩ argmax

y∈Y
f2(y; Z) = ∅

)
> 0.

Where f1 and f2 are defined as:

f1(y; Z) := s1(y) + εZ⊤y, f2(y; Z) := s2(y) + εZ⊤y.

Let t ∈ (0, 1), the lemma above leads to

PZ

[
max
y∈Y

(
tf1(y; Z) + (1 − t)f2(y; Z)

)
< max

y∈Y
tf1(y; Z),

+ max
y∈Y

(1 − t)f2(y; Z)
]

> 0.

Since with point 1. F∆ is convex, this strict inequality and the fact that the
distribution of Z is non-negative leads to the strict convexity of F∆ over V∆. Last,
using the decomposition RY = V∆ + span(1), we get the affine property over
V ⊥

∆ = span(1) with the same arguments as for Proposition 10 Point 2.
3. Since we are in the setting given in the preamble of Lemma 12, for s ∈ RY , the

argmax in the definition of Fε,∆ is reduced to a singleton almost surely:

PZ
[∣∣ argmax

y∈Y
{s(y) + εZ⊤y}

∣∣ > 1
]

= 0. (39)

Indeed, because the standard multivariate Gaussian distribution has Rd as
support, proving Equation (39) reduces to prove that for any pair of distinct
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vectors (y, y′) ∈ Y2, y ̸= y′,

PZ
[
s(y) + εZ⊤y = s(y′) + εZ⊤y′] = 0,

which is true, otherwise ⟨·|y − y′⟩ is constant on a ball of radius r > 0 in Rd,
leading to the contradiction y = y′. Remark that the uniqueness of the argmax
in Y implies the uniqueness of the corresponding argmax in the distribution
space ∆Y . Now, using Equation (39), Danskin’s lemma [28, Proposition A.3.2],
and swapping integration with respect to the density of Z and differentiation with
respect to s, we get:

∇sE[max
q∈∆Y

(s + εY ⊤Z)⊤q] = E[argmax
q∈∆Y

(s + εY ⊤Z)⊤q].

4. The domain property is proved in the same way as for Proposition 10 point 4, the
rest also yields similarly.

Eventually, we show that Ωε,C is the structured regularization corresponding to
Ωε,∆.
Proposition 13. Ωε,C(µ) = minq : Y q=µ Ωε,∆(q), and hence all the properties of
Proposition 9 are true in the sparse perturbation case.

Proof. By definition, Fε,C(θ) = Fε,∆(Y ⊤θ). Besides, since Ωε,C and Ωε,∆ are proper
convex lower-semicontinuous, they are bi-conjugate by Fenchel-Moreau theorem.
Applying the computations of Bauschke and Combettes [29, Corollary 15.28] with
g = Fε,∆ and L : x 7→ Y ⊤x leads to the result.

4 Convergence of the alternating minimization
scheme

In this section, we place ourselves in the setting of (non-contextual) stochastic
optimization. Therefore, we can drop x from the notations for the sets Y, C, ∆Y ,
RY , and regularization functions Ω∆ and ΩC. We focus on a special case of our
primal-dual algorithm where the dual update minimizes directly on the score vector,
instead of the weights w of a machine learning predictor Y ⊤φw. Then, we will show
that Algorithm (23), where the dual update minimizes directly on the score vector,
converges with a linear rate toward the global minimum of SΩ∆,N , provided that
the Jensen gap of the regularizer Ω∆ is a convex function. While this result does
not imply the convergence of the original algorithm, it provides useful insights on its
behavior with respect of the parametrization of the dual vector. The convergence of
the algorithm we use in practice would indeed be a very challenging task, as we use
various approximation (e.g., Monte-Carlo sampling, see Section 2.3). Furthermore,
we typically parametrize the exploration of the space of score via a neural network,
whose lack of convenient mathematical properties hinders the development of a generic
convergence proof. Let us first recall the five-point property and convergence result
of Léger and Aubin-Frankowski [14].
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Five-point property [14, Definition 2.1]
Let ϕ : Y × Z → Rd be a two-variable function bounded from below on X × Y . We
say that ϕ follows the five-point property if for all y ∈ Y , z, z0 ∈ Z we have

ϕ(y, z1) + ϕ(y0, z0) ≤ ϕ(y, z) + ϕ(y, z0), (40)

where y0 = argminy∈Y ϕ(y, z0) and z1 = argminz∈Z ϕ(y0, z).
Theorem 14. [14, Theorem 2.3] Suppose that ϕ satisfies the five-point property (40)
and consider the alternating minimization algorithm. Suppose that ϕ satisfies the five
points property, and the minimizers exist and are uniquely attained at each step of
the algorithm, then the following statements hold:

1. ∀n ≥ 0, ϕ(yn+1, zn+1) ≤ ϕ(yn, zn+1) ≤ ϕ(yn, zn).
2. For any y ∈ Y , z ∈ Z and any n ≥ 1,

ϕ(yn, zn) ≤ ϕ(y, z) + ϕ(y, z0) − ϕ(y0, z0)
n

.

In particular, ϕ(yn, zn) − miny∈Y,z∈Z ϕ(y, z) = O( 1
n )

First, note that all the results of Léger and Aubin-Frankowski [14] rely on the
minimum being uniquely attained at each iteration of the alternating minimization
scheme. While the minima always exist in our case, the unicity is not guaranteed for
the dual update (23b). As it was already noted by the authors, their results remain
valid in this case, as their proofs only consider the sequence of values of the function
evaluated at the successive iterates, which is uniquely defined, and not the value of
the iterates themselves.

Before stating the main result of this section, let us first introduce some definitions
and lemmas. The partial minimization of our surrogate function SΩ∆,N introduced in
Equation (15b) is defined as

S̄Ω∆,N (q⊗) := min
s⊗∈S̄⊗

SΩ∆,N (s⊗, q⊗), (41)

where S̄⊗ = {(si)i∈[N ] ∈ (RY)N | s1 = . . . = sN }.
Lemma 15. Let q⊗ = (qi)i∈[N ] ∈ ∆⊗, the function S̄Ω∆,N defined above is equal to

S̄Ω∆,N (q⊗) = 1
N

N∑
i=1

⟨γi|qi⟩ + κ

N

[ N∑
i=1

Ω∆(qi) − NΩ∆( 1
N

N∑
i=1

qi)
]
.

Besides, S̄Ω∆,N coincides over ∆⊗ with

S̄Ψ∆,N (q⊗) := 1
N

N∑
i=1

⟨γi|qi⟩ + κ

N

[ N∑
i=1

Ψ∆(qi) − NΨ∆( 1
N

N∑
i=1

qi)
]
. (42)
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Note that it is convex if the function q⊗ 7→ 1
N

∑N
i=1 Ψ∆(qi) − Ψ∆( 1

N

∑N
i=1 qi) is convex.

This latter corresponds to the Jensen gap of Ψ∆. We postpone the convexity study to
Appendix C.

Proof. Let q⊗ ∈ ∆⊗, and S̄⊗ = {(si)i∈[N ] ∈ (RY)N | s1 = . . . = sN },

S̄Ω∆,N (q⊗) = min
s⊗∈S̄⊗

SΩ∆,N (s⊗, q⊗), (43a)

= min
s∈RY

1
N

N∑
i=1

⟨γi|qi⟩ + κ
(
Ω∆(qi) + Ω∗

∆(s) − ⟨s|qi⟩
)
, (43b)

= 1
N

N∑
i=1

⟨γi|qi⟩ + κ

N

[ N∑
i=1

Ω∆(qi) − NΩ∆( 1
N

N∑
i=1

qi)
]
. (43c)

In the computations above, we use the definition (15) of the function SΩ∆,N , and the
fact that Ω∆ is the Fenchel conjugate of Ω∗

∆ to derive the last line.

Main result
This allows us to introduce the main theorem of this section.

Theorem 16. Suppose that the Jensen gap of Ψ∆ is a convex function, with Ω∆ =
Ψ∆ + I∆. Then, the iterates of (23) converge in value toward the global minimum of
the surrogate problem S̄Ω∆,N over (RY , ∆⊗) with a rate O( 1

t ).

Proof. The proof consists in two steps. First, we express the five-point property with
the notations of the problem, and obtain an equivalent form expressed with the
marginal minimizer S̄Ω∆,N instead of the original function SΩ∆,N . Then, we show that
this equivalent form holds as a consequence of the convexity of the Jensen gap of Ψ∆,
which is sufficient to prove the convergence using Theorem 14.

Let s0
⊗ ∈ S̄⊗, where S̄⊗ = {(si)i∈[N ] ∈ (RY)N | s1 = . . . = sN }. First, let us write

the five-point property (40) with the notations of the problem, that should hold for all
q⊗ ∈ ∆⊗, and s⊗ ∈ S̄⊗,

SΩ∆,N

(
s1

⊗, q⊗
)

+ SΩ∆,N

(
s0

⊗, q1
⊗
)

≤ SΩ∆,N

(
s⊗, q⊗

)
+ SΩ∆,N

(
s0

⊗, q⊗
)
,

with q1
⊗ = argminq⊗∈∆⊗

SΩ∆,N (s0
⊗, q⊗) and s1

⊗ ∈ argmins⊗∈S⊗
SΩ∆,N (s⊗, q1

⊗). Note
that the index numbering is different then in Equation (40) to adapt to our case, but
the two expressions are strictly equivalent.

We observe that s⊗ appears in a single term of the equation that should hold for
all s⊗ ∈ S̄⊗. Hence, we take the minimum in s⊗ and obtain the equivalent form

S̄Ω∆,N (q⊗) + SΩ∆,N

(
s0

⊗, q⊗
)

≥ SΩ∆,N

(
s1

⊗, q⊗
)

+ SΩ∆,N

(
s0

⊗, q1
⊗
)
.

We move the term SΩ∆,N (s0
⊗, q⊗) to the right-hand side, and we substract

S̄Ω∆,N (q1
⊗) = SΩ∆,N (s1

⊗, q1
⊗) from both sides to obtain
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S̄Ω∆,N (q⊗)−S̄Ω∆,N (q1
⊗) ≥ SΩ∆,N

(
s1

⊗, q⊗
)
+SΩ∆,N

(
s0

⊗, q1
⊗
)
−SΩ∆,N

(
s1

⊗, q1
⊗
)
−SΩ∆,N

(
s0

⊗, q⊗
)
.

On the right-hand side, we observe that the function SΩ∆,N is evaluated in four
different points, twice in positive and twice in negative. Each of the element s0

⊗, s1
⊗, q1

⊗
and q⊗ appear exactly twice in the evaluations, once in positive and once in negative.
Hence, the terms that only depend on one of the variables will cancel themselves, and
the sum will only consist of the terms that depend on both variables. The five-point
property then becomes

S̄Ω∆,N (q⊗) − S̄Ω∆,N (q1
⊗) ≥ κ

N

N∑
i=1

(
− ⟨s1

i |qi⟩ − ⟨s0
i |q1

i ⟩ + ⟨s1
i |q1

i ⟩ + ⟨s0
i |qi⟩

)
, (44)

S̄Ω∆,N (q⊗) − S̄Ω∆,N (q1
⊗) ≥ κ

N

(
⟨s1

⊗|q1
⊗⟩ + ⟨s0

⊗|q⊗⟩ − ⟨s1
⊗|q⊗⟩ − ⟨s0

⊗|q1
⊗⟩
)
. (45)

We will now show that the modified five-point property (45) holds in our case.
According to Lemma 15, S̄Ω∆,N coincides with S̄Ψ∆,N over ∆⊗, which is convex by
hypothesis. Hence, for all (q⊗, q1

⊗) ∈ rel int(∆⊗)2 we have

S̄Ω∆,N (q⊗) ≥ S̄Ω∆,N (q1
⊗) + ⟨∇S̄Ψ∆,N (q1

⊗) | q⊗ − q1
⊗⟩. (46)

We can compute the gradient as follows

∇S̄Ψ∆,N (q1
⊗) =

 1
N

(
γi + κ

(
∇Ψ∆

(
q1

i

)
− ∇Ψ∆

( 1
N

N∑
j=1

q1
j

))
i∈[N ]

(47)

Since q1
i = ∇Ω∗

∆(s̄0 − 1
κ γi) according to Proposition 1, we know using Proposition 8

that there exists a vector zi ∈ V ⊥ such that

∇Ψ∆(q1
i ) = s0 − 1

κ
γi + zi.

Similarly, we can compute

s1
⊗ = argmin

s⊗∈S̄⊗

SΩ∆,N (s⊗, q1
⊗),

= argmin
s⊗∈S̄⊗

1
N

N∑
i=1

⟨γi | q1
i ⟩ + κLΩ∆(si, q1

i ),

= argmin
s⊗∈S̄⊗

1
N

N∑
i=1

Ω∗
∆(si) − ⟨si | q1

i ⟩,

27



=

argmin
s∈RY

Ω∗
∆(s) − ⟨s | 1

N

N∑
j=1

q1
j ⟩


i∈[N ]

,

= (s1)i∈[N ], where s1 ∈ ∂Ω∆( 1
N

N∑
j=1

q1
j ).

It gives us the existence of a vector z ∈ V ⊥ such that

∇Ψ∆( 1
N

N∑
j=1

q1
j ) = s1 + z.

By replacing the terms of Equation (47) by their expression, we get

∇S̄Ψ∆,N (q1
⊗) =

(
1
N

(
γi + κ

(
s0 − 1

κ
γi + zi − s1 − z

)))
i∈[N ]

=
( κ

N
(s0 − s1 + zi − z)

)
i∈[N ]

.

We can now express Equation (46) as the following

S̄Ω∆,N (q⊗) ≥ S̄Ω∆,N (q1
⊗) + κ

N
⟨s0

⊗ − s1
⊗ | q⊗ − q1

⊗⟩,

which is equivalent to the modified five-point property (45). We can then apply
Theorem 14, concluding the proof.

5 Computational experiments
Experiments design.
We would like to highlight the following points. First, using a simple toy problem in
Section 5.1 where every computation is straightforward, our aim is to demonstrate the
effect of the perturbation scale ε (corresponding to the regularization scale κ). Then,
we study the performance of the policy trained with our primal-dual algorithm in
Section 5.2. We benchmark against a policy trained via supervised learning, where the
dataset contains target solution computed with an expensive Lagrangian heuristic.

5.1 Toy problem
We design a very simple problem, where the most frequent anticipative solution is the
worst for the stochastic optimization problem.

Problem statement.
We consider a constant context x, which is equivalent to having no context. The
one-dimensional solution space is Y = {0, 1}, and the exogenous noise follows a uniform
distribution over a three-states space ξ ∼ U({ξ1, ξ2, ξ3}). In this tabular setting we can
explicitly define the cost as done in Table 1.
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Scenario ξ1 Scenario ξ2 Scenario ξ3

Solution 0 4 -1 -2
Solution 1 0 0 0

Table 1: Tabular definition of the cost for the
toy problem.

The problem we would like to solve is the following:

min
y∈{0,1}

Eξ∼U(ξ1,ξ2,ξ3)
[
c(y, ξ)

]
. (48)

Stochastic and anticipative solutions.
It is immediate to derive both the anticipative solutions per scenario, and the solution
of the stochastic problem (48). The scenario ξ1 gives y = 1 as optimal solution whereas
scenarios ξ2 and ξ3 lead to the solution y = 0. Given the uniform distribution, the
optimal solution of Equation (48) is y = 1. We see that the most represented solution
among the anticipative ones is not the optimal solution of our stochastic problem.

Primal-dual algorithm.
We have access to a training set denoted as Dtrain = (ξi)i∈[ntrain]. Since we have
no context, we directly learn a parameter θ instead of parameterizing a statistical
model φw. We implement the primal-dual algorithm in a perturbation framework. Our
hyperparameters are summarized in Table 2. We highlight that in our case, the cost
function c is linear.

Name Definition Value

lr Learning rate for the SGD 10−1

nb epochs Number of epochs for the SGD 10
nb samples Number of perturbation samples 103

nb iterations Number of outer iterations 20
nb seeds Number of seeds to average over experiments 30

ε Scale of the perturbation (primal and dual updates) varies
α Momentum coefficient for the dual update 0.5

Table 2: Hyper-parameters for the experiments on the toy problem.

We save the value of θ through the outer iterations of the primal-dual algorithm,
and we compute its average value. This latter can then be used to derive a solution
of the stochastic problem (48). We do this for different values of the perturbation (or
regularization) scale ε, and average over nb seeds = 30 seeds. Figure 3 presents the
results, where the curves display the proportions of averaged values of θ leading to the
optimal solution. On the left plot we show ε ranging from 1 to 150. On the right we
zoom at the critical range from 2 to 4.

First, we see that when the scale of perturbation ε is too small, typically smaller
than 2.7 in this toy problem example, we learn a θ value that leads to the majority
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anticipative solution, which is not the optimal solution of problem (48). It is natural
because the smaller is ε, the closer the primal variables are to anticipative decisions in
the first outer iteration. The dual updates then push θ to lead to the majority decision,
and the regularization term is too small to deviate from anticipative solutions in the
primal updates.
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Fig. 3: Proportion of θ values giving the optimal solution of problem (48) when ε
varies.

Result 1. When the scale of the perturbation ε is too small, we learn θ to imitate the
majority anticipative solutions and possibly get poor performance.

When ε exceeds a certain threshold, the proportion over seeds of θ leading to the
optimal solution increases, and reaches 1, highlighting the crucial role of regularization.
However, too large values of ε degrade the performances, as the primal update objectives
become dominated by the regularization, leading to random and uninformative solutions.
We indeed observe an asymptotic proportion of 0.5 in the left plot of Figure 3.
Result 2. When the scale of the perturbation ε is too large, it dominates the cost per
scenario and the parameter θ, leading to random values of θ and poor performance.

5.2 Two-stage minimum weight spanning tree
We now consider a richer contextual stochastic optimization problem, and compare
several policies parameterized by neural networks.

Problem statement.
Let G = (V, E) be an undirected graph, and let ξ ∈ Ξ be an exogenous noise. The goal
is to build a spanning tree on G over two stages at minimum cost, the second-stage
building costs – depending on ξ – being unknown when first-stage decisions are taken.
Nonetheless, we have access to some context random variable x ∈ X correlated to ξ.
For each edge e ∈ E and scenario ξ ∈ Ξ, we denote by ce the scenario-independent
first stage cost of building e, and by de(ξ) the scenario-dependent second stage
cost. Our contextual stochastic two-stage minimum weight spanning tree problem is
Equation (49).

min
π∈H

Ex

[∑
e∈E

ceπ(x)e + Eξ

[
Q
(
π(x); ξ

)]]
, (49a)
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s.t.
∑

e∈E(Y )

π(x)e ≤ |Y | − 1, ∀x ∈ X , ∀Y, ∅ ⊊ Y ⊆ V, (49b)

π(x)e ∈ {0, 1}, ∀x ∈ X , ∀e ∈ E. (49c)

Notice that constraints (49b)-(49c) lead to a solution space Y(x) corresponding
to the forests on G. The objective function in this case is given by c0(x; y) =∑

e∈E ceye + Eξ

[
Q
(
y; ξ
)]

. The second stage is encapsulated in the function Q, as
defined in Equation (50).

Q
(
π(x); ξ

)
:= min

z

∑
e∈E

de(ξ)ze, (50a)

s.t.
∑
e∈E

π(x)e + ze = |V | − 1, (50b)∑
e∈E(Y )

π(x)e + ze ≤ |Y | − 1, ∀Y, ∅ ⊊ Y ⊆ V, (50c)

ze ∈ {0, 1}, ∀e ∈ E. (50d)

In problem (49), we look for a policy π that maps a context realization x ∈ X to
a good first-stage forest. In this case, π(x)e = 1 if and only if edge e is selected at
first stage to build our spanning tree given a context value x. Similarly, variable z in
problem (50) is such that ze = 1 if and only if edge e is selected at second stage to build
a spanning tree. We force integer decision variables with Equations (49c) and (50d), and
constraints (50b) and (50c) make sure that we define a tree with the variable π(x) + z.
Remark 2. In practice, we can even make the structure of the graph depend on the
variable x, but we intentionally ease notations above.

�



�
	ML layers φw

(GLM or GNN)

Maximum
weight forest
(Kruskal)

Input

instance x

Edge weights θ Solution forest y

a b c

d e f

g h i

a b c

d e f

g h i

0.9 −0.2

1.6 −1.9

−2.3 1.3

2.0

−0.1

0.7

−0.4

−0.5

0.1

a b c

d e f

g h i

Fig. 4: Two-stage minimum spanning neural network.

For this example, we define a neural network illustrated by Figure 4. Each edge e
of an instance (context) x is encoded by a feature vector ϕ(x, e). The feature matrix is
given as input to ML layers φw – a GLM or a graph neural network (GNN) – with
learnable parameters w, which predicts edge weights θe. We use the predicted edge
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weights θ as the objective of a maximum weight forest problem layer (51). A maximum
weight forest can be efficiently found using Kruskal’s algorithm.

πw(x) := argmax
y

∑
e∈E

φw(x)eye, (51a)

s.t.
∑

e∈E(Y )

ye ≤ |Y | − 1, ∀Y, ∅ ⊊ Y ⊆ V, (51b)

ye ∈ {0, 1}, ∀e ∈ E. (51c)

Learning and evaluation.
We have access to a training data set including context and noise
realizations Dtrain = (xi, ξi)i∈[ntrain] to learn the parameters w. Once the weights w
are learned, we can evaluate the resulting policy πw : x 7→ f ◦ φw(x) for our
problem (49) via . To do so, we have access to test Dtest = (xi, ξi)i∈[ntest] and
validation Dval = (xi, ξi)i∈[nval] datasets, and we can approximate the two expectations
in the objective function of Equation (49) by Monte-Carlo averages over the datasets.

Benchmarks.
We derive two benchmark policies for this problem. The first one denoted as πmedian is
very simple, and not based on any learning process. It consists in solving a deterministic
problem (52) where, given a context realization x, we replace the unknown cost vector
of the second stage by an estimator of its median.

πmedian(x) := argmin
y

min
z

∑
e∈E

ceye + d̂e(x)ze, (52a)

s.t.
∑
e∈E

ye + ze = |V | − 1, (52b)∑
e∈E(Y )

ye + ze ≤ |Y | − 1, ∀Y, ∅ ⊊ Y ⊆ V, (52c)

ye ∈ {0, 1}, ∀e ∈ E, (52d)
ze ∈ {0, 1}, ∀e ∈ E. (52e)

Our second benchmark policy is more sophisticated, and based on an additional
dataset which is typically not available in the context of this paper. We follow the
approach of Dalle et al. [5], Section 6.5, where for each context xi of our training
dataset we have several realizations of the endogenous noise ξ. This allows us to
derive Lagrangian heuristic-based labels yL

i to imitate. We leverage the richer training
set DL

train = (xi, yL
i )i∈[ntrain] to imitate the solutions of the Lagrangian heuristic, leading

to some parameter wL. We expect the resulting policy πwL to perform very well, as
the Lagrangian heuristic is known to produce very good solutions.
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Primal-dual algorithm.
We evaluate the quality of the policy learned with our primal-dual algorithm. Our
hyperparameters are defined in Table 3. The instances we consider are defined on
grid-graphs (see Figure 4) with grid size = 20 × 20 nodes. In our training set, we have
train size instances, each with 20 scenarios. At each (outer) iteration, we randomly
sub-sample nb scenarios = 10 scenarios per instance. It leads to reduced computational
time, and good performance as we show below.

Name Definition Value

grid size Size of the squared grid-graph instances 20 × 20
train size Number of train samples 50
val size Number of validation samples 50
test size Number of test samples 50

lr init Initial learning rate for Adam optimizer (dual update) 10−5

nb epochs Number of epochs for the SGD (dual update) 30
nb scenarios Number of scenarios sub-sampled per instance 10
nb samples Number of perturbation samples (primal and dual updates) 20

nb iterations Number of outer iterations 50
ε Scale of the perturbation (primal and dual updates) 10−4

α Momentum coefficient for the dual update 0.1

Table 3: Constants and hyperparameters for the primal-dual algorithm on
the maximum weight two-stage spanning tree problem.

We plot validation and test estimated average gaps over iterations in Figure 5.
The dotted black line corresponds to the simple policy πmedian, which does not evolve
over iterations. We observe a poor performance for this simple approach, with roughly
12% average validation and test gaps. The green dashed line corresponds to the
policy πwL derived by imitating the Lagrangian heuristic. As expected it reaches very
good performance, with average gaps smaller than 2%. Then, we evaluate two different
policies learned with our primal-dual algorithm. The first one – in dotted-dashed blue
line – uses the current outer iteration weights w(t) to parameterize the problem (51).
We denote it by πw(t) . The second one – in solid red line – uses the average weights
over the past outer iterations w̄(t) = 1

t

∑
t′≤t w(t′) to parameterize the same problem.

We name this policy πw̄ in the legend of Figure 5. We observe that using the current
weights with policy πw(t) leads to small oscillations over outer iterations, while the
convergence of policy πw̄ seems smoother. It can be understood based on the alternating
nature of the primal-dual algorithm. Maybe more surprisingly, the limit policy reaches
the performance of the Lagrangian heuristic-based policy πwL . This is very interesting
in practice, because the Lagrangian heuristic is computationally heavy, and typically
can not be applied to very large instances.
Result 3. The average weights policy πw̄ converges, and reaches the performance of
the computationally demanding Lagrangian heuristic-based benchmark.
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Fig. 5: Validation and test average gaps of policies over the iterations of our
primal-dual algorithm, for the two-stage minimum weight spanning tree.

6 Conclusion and perspectives
In this paper, we explore policies for contextual stochastic combinatorial optimization,
which are based on neural networks with combinatorial optimization (CO) layers.
The natural paradigm for training these networks is empirical risk minimization.
However, the score function estimator has a high variance, which can hinder the
efficient determination of the neural network weights.

To address this, we design a surrogate learning problem based on Fenchel-Young
losses and introduce a novel primal-dual alternating minimization scheme to solve
it. We study the structure of these primal-dual updates using convex analysis tools
and demonstrate their practical tractability. Specifically, primal updates decompose
per scenario, similar to classic stochastic programming approaches. Dual updates
correspond to a supervised learning problem with Fenchel-Young loss, which we solve
using stochastic gradient descent. In both cases, we rely on sampling and leverage
an oracle for a simpler deterministic problem, allowing us to scale to relatively large
instances.

A Regularizers, Legendre-type functions and mirror
maps

We detail here the definitions of mirror-maps and regularizers, and study their
connections with Legendre-type functions.

Mirror maps Juditsky et al. [24, Definition 2.1].
Let Ψ : Rd → R ∪ {+∞} be a function and C ⊂ Rd be a closed convex set. We say
that Ψ is a C-compatible mirror map if
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1. Ψ is lower-semicontinuous and strictly convex,
2. Ψ is differentiable on int(dom(Ψ)),
3. the gradient of Ψ takes all possible values, i.e., ∇Ψ

(
int(dom(Ψ))

)
= Rd.

4. C ⊂ cl
(

int(dom(Ψ))
)
,

5. int(dom(Ψ)) ∩ C ̸= ∅.
Remark 3. Let C ⊂ Rd be closed convex set, and Ψ be a Legendre-type function such
that C ⊂ cl

(
int(dom(Ψ))

)
, int(dom(Ψ)) ∩ C ̸= ∅, and dom(Ψ∗) = Rd. Then Ψ is a

C-compatible mirror map.
Remark 4. Sometimes Ψ is called a Bregman potential, and the term of mirror map
is used for its gradient ∇Ψ.

Regularizers Juditsky et al. [24, Definition 2.8].
Let C ⊂ Rd be a closed convex set. A function Ω : Rd → R∪{+∞} is a C-pre-regularizer
if it is strictly convex, lower-semicontinuous, and if cl(dom(Ω)) = C. If in addition
dom(Ω∗) = Rd, then Ω is said to be a C-regularizer.
Remark 5. The previous definition is less restrictive than the one of mirror maps. In
particular, regularizers are not necessarily differentiable, and their domains may be
sub-dimensional.

Mirror descent can be seen as an extension of the (projected) gradient descent
algorithm, recovered by choosing Ψ = 1

2 || · ||22 as mirror map. In order to deal with
our combinatorial applications, it is convenient to use maps on non-full dimensional
polytopes, which requires a slightly less stringent definition than the classic mirror map.
We deal with these aspects using tools close to the notion of regularizer introduced
above, and considered recently by Juditsky et al. [24] for their unified mirror descent
algorithm. The term “unified” is employed to highlight that the resulting algorithm
covers mirror descent and its variant named dual averaging [30, 31].

B Relationship with mirror descent
In this section, we place ourselves in the setting of (non-contextual) stochastic
optimization. Therefore, we can drop x from the notations for the sets Y, C, ∆Y , RY ,
and regularization functions Ω∆ and ΩC . We are going to make a link between a special
case of our primal-dual updates in Equation (18) and mirror descent. For that purpose,
we start with some definitions and lemmas. We introduce the following regularization
function Ω∆⊗ , that takes as input a product of distributions q⊗ ∈ ∆⊗

Ω∆⊗(q⊗) :=
N∑

i=1
Ω∆(qi). (B1)

Using Proposition 8, we define a ∆Y -compatible mirror map Ψ∆, such that
Ω∆ = Ψ∆ + I∆Y . Similarly, for q⊗ ∈ ∆⊗ in the product distribution space, we define

Ψ⊗(q⊗) :=
N∑

i=1
Ψ∆(qi). (B2)
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The following lemma is useful to derive mirror descent below.
Lemma 17. The function Ψ⊗ defined in Equation (B2) is a ∆⊗-compatible mirror map.
Besides, its conjugate Ψ∗

⊗, defined over (RY)N is such that, for s⊗ = (si)i∈[N ] ∈ (RY)N ,

Ψ∗
⊗(s⊗) =

N∑
i=1

Ψ∗
∆(si).

Proof. Extending the properties of the ∆Y -compatible mirror map Ψ∆ to a
∆⊗-compatible mirror map Ψ⊗ comes from the fact that Ψ⊗ is a sum of functions of
independent variables. In particular, for q⊗ ∈ rel int(∆⊗), the gradient of Ψ⊗ is the
product of gradients of Ψ∆

∇Ψ⊗(q⊗) =
(
∇Ψ∆(qi)

)
i∈[N ].

For the conjugate, let s⊗ ∈ (RY)N . By definition we have

Ψ∗
⊗(s⊗) = sup

q⊗∈dom(Ψ⊗)
{⟨s⊗|q⊗⟩ − Ψ⊗(q⊗)}, (B3a)

=
N∑

i=1
sup

qi∈dom(Ψ∆)

{
⟨si|qi⟩ − Ψ∆(qi)

}
, (B3b)

=
N∑

i=1
Ψ∗

∆(si). (B3c)

Now, the following proposition makes a link between a special case of our primal-dual
algorithm where we added a damping step, and mirror descent.
Theorem 18. Let α ∈ (0, 1) and η = N α

κ . Then, the following special case of
algorithm (18)

q
(t+1)
⊗ = argmin

q⊗∈∆⊗

SΩ∆,N

(
s̄

(t)
⊗ , q⊗

)
, (decomposition), (B4a)

s̄
(t+ 1

2 )
⊗ ∈ argmin

s⊗∈S̄⊗

SΩ∆,N

(
s⊗, q

(t+1)
⊗

)
, (coordination), (B4b)

s̄
(t+1)
⊗ = αs̄

(t+ 1
2 )

⊗ + (1 − α)s̄(t)
⊗ , (damping), (B4c)

has the same primal iterates q
(t)
⊗ as a mirror descent algorithm applied to the

function S̄Ψ∆,N defined in Section 2.4, using the ∆⊗-compatible mirror map Ψ⊗ and
step size η

s
(t)
⊗ = ∇Ψ⊗(q(t)

⊗ ), (B5a)
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q
(t+1)
⊗ ∈ argmin

q⊗∈rel int(∆⊗)
BΨ⊗

(
q⊗||∇Ψ∗

⊗(s(t)
⊗ − ηg(t))

)
, where g(t) = ∇S̄Ψ∆,N (q(t)

⊗ ),

(B5b)

and where BΨ⊗ is the Bregman divergence generated by Ψ⊗. Therefore, provided that
Ψ⊗ is ρ-strongly convex over rel int(∆⊗) with respect to the norm || · ||, and that the
function S̄Ψ∆,N is convex and L-Lipschitz (has bounded gradients) with respect to the
same norm || · ||, the average primal iterates q

(t)
⊗ in Equation (B4) converge in value to

the minimum of S̄Ψ∆,N over ∆⊗, which is also the minimum of the function S̄Ω∆,N by
definition.

This theorem shows that, from a geometrical point of view, the primal-dual
algorithm can be interpreted as a mirror descent applied to S̄Ψ∆,N . This result provides
an alternate proof of convergence, albeit with stronger assumptions than Theorem 5.
In particular, the Lipschitz-continuity of the gradients of S̄Ψ∆,N seems, at first sight,
challenging to obtain considering the assumptions we made on Ψ∆ in Section ??.

Proof. The proof is in three steps. First, we recast the mirror descent updates given
in Equation (B5). Second, we explicit the primal-dual alternating minimization steps
in Equation (B4). Last, we show by induction that the primal updates of the two
algorithms coincide.

Mirror descent updates.
The gradient of S̄Ψ∆,N at q⊗ ∈ rel int(∆⊗) is

∇S̄Ψ∆,N (q⊗) =
(

1
N

[
γi + κ

[
∇Ψ∆(qi) − ∇Ψ∆

( 1
N

N∑
j=1

qj

)]])
i∈[N ]

. (B6)

Let’s now write the mirror descent updates for the function S̄Ψ∆,N with ∆⊗-compatible
mirror map Ψ⊗, and step size η

s
(t)
⊗ = ∇Ψ⊗(q(t)

⊗ ),

q
(t+1)
⊗ ∈ argmin

q⊗∈rel int(∆⊗)
BΨ⊗

(
q⊗||∇Ψ∗

⊗(s(t)
⊗ − ηg(t))

)
, where g(t) = ∇S̄Ψ∆,N (q(t)

⊗ ).

Using the definition of Ψ⊗ in Equation (B2),

s
(t)
⊗ =

(
∇Ψ∆(q(t)

i )
)

i∈[N ]
.

Using in addition the expression of the gradient of S̄Ψ∆,N given in Equation (B6),

s
(t)
⊗ − ηg(t) =

(
∇Ψ∆(q(t)

i ) − η

N

(
γi + κ

[
∇Ψ∆(q(t)

i ) − ∇Ψ∆
( 1

N

N∑
j=1

q
(t)
j

)]))
i∈[N ]

.
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Recall that we use η = N α
κ . It leads to

s
(t)
⊗ − ηg(t) =

(
(1 − α)∇Ψ∆(q(t)

i ) + α
(

− 1
κ

γi + ∇Ψ∆
( 1

N

N∑
j=1

q
(t)
j

)))
i∈[N ]

. (B7)

We see with Equation (B7) above that we can consider each component i ∈ [N ] of
the product variable separately. Using Lemma 17, this property remains true when
applying both the gradient of Ψ∗

⊗ and the Bregman divergence generated by Ψ⊗.
Remark now that since Ω∆ = Ψ∆ + I∆Y , we have for i ∈ [N ], by [3, Proposition 3.1]

q
(t+1)
i ∈ argmin

qi∈rel int(∆Y )
BΨ∆

(
qi||∇Ψ∗

∆(s(t)
i − ηg

(t)
i )
)

= {∇Ω∗
∆
(
s

(t)
i − ηg

(t)
i

)
},

= ∇Ω∗
∆

(
(1 − α)∇Ψ∆(q(t)

i ) + α
(

− 1
κ

γi + ∇Ψ∆
( 1

N

N∑
j=1

q
(t)
j

)))
.

We now define the following iterates, for an additional notation

s̄(0) = 0, s̄(t+1) = α∇Ψ∆
( 1

N

N∑
i=1

q
(t+1)
i

)
+ (1 − α)s̄(t).

Finally, we recast mirror descent updates (with the additional variable s̄(t)) as

q
(t+1)
i = ∇Ω∗

∆

(
(1 − α)∇Ψ∆(q(t)

i ) + α
(

− 1
κ

γi + ∇Ψ∆
( 1

N

N∑
j=1

q
(t)
j

)))
, ∀i ∈ [N ],

(B8a)

s̄(t+1) = α∇Ψ∆
( 1

N

N∑
i=1

q
(t+1)
i

)
+ (1 − α)s̄(t). (B8b)

Primal-dual alternating minimization updates.
Now, we are going to detail the primal-dual updates of Equation (B4). Let s̃

(t)
⊗ =

(s̃(t), . . . , s̃(t)) ∈ S̄⊗ be a product dual vector at step t, the decomposition update in
Equation (B4a) can be written as

q̃
(t+1)
⊗ = argmin

q′
⊗∈∆⊗

SΩ∆,N

(
s̃

(t)
⊗ , q′

⊗

)
,

= argmin
q′

⊗∈∆⊗

1
N

N∑
i=1

⟨γi|q′
i⟩ + κ

(
Ω∆(q′

i) + Ω∗
∆(s̃(t)) − ⟨s̃(t)|q′

i⟩
)
,

= argmin
q′

⊗∈∆⊗

N∑
i=1

Ω∆(q′
i) − ⟨s̃(t) − 1

κ
γi|q′

i⟩,
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=
(

∇Ω∗
∆
(
s̃(t) − 1

κ
γi

))
i∈[N ]

.

The minimizer corresponding to Equation (B4b) can be written as

s̃
(t+ 1

2 )
⊗ ∈ argmin

s⊗∈S̄⊗

SΩ∆,N

(
s⊗, q̃

(t+1)
⊗

)
,

s̃
(t+ 1

2 )
⊗ ∈ argmin

s⊗∈S̄⊗

1
N

N∑
i=1

⟨γi|q̃(t+1)
i ⟩ + κ

(
Ω∆(q̃(t+1)

i ) + Ω∗
∆(si) − ⟨si|q̃(t+1)

i ⟩
)
,

s̃
(t+ 1

2 )
⊗ = (s̃(t+ 1

2 ), . . . , s̃(t+ 1
2 )), where s̃(t+ 1

2 ) ∈ argmin
s∈RY

Ω∗
∆(s) − ⟨s| 1

N

N∑
i=1

q̃
(t+1)
i ⟩,

s̃
(t+ 1

2 )
⊗ = (s̃(t+ 1

2 ), . . . , s̃(t+ 1
2 )), where s̃(t+ 1

2 ) ∈ ∂Ω∆
( 1

N

N∑
i=1

q̃
(t+1)
i

)
.

Finally, we reformulate the primal-dual alternating minimization updates of
Equation (B4)

q̃
(t+1)
i = ∇Ω∗

∆
(
s̃(t) − 1

κ
γi

)
, ∀i ∈ [N ], (B9a)

s̃(t+ 1
2 ) ∈ ∂Ω∆

( 1
N

N∑
i=1

q̃
(t+1)
i

)
, (B9b)

s̃(t+1) = αs̃(t+ 1
2 ) + (1 − α)s̃(t). (B9c)

Equality of the primal iterates.
We recall that we denote by H∆ = aff(∆Y) the affine hull of the probability simplex,
and by V∆ the vector subspace of RY which is the direction of H∆. We have the direct
sum RY = V∆ ⊕ V ⊥

∆ . Given the iterates of mirror descent in Equation (B8), and the
ones of our primal-dual alternating minimization scheme stated in Equation (B9), we
show by induction that there exists a sequence of vectors z(t) ∈ V ⊥

∆ such that

s̃(t) = s̄(t) + z(t), (B10a)

q̃
(t+1)
i = q

(t+1)
i , ∀i ∈ [N ]. (B10b)

For the initialization, we consider for both sequences

s̃(0) = s̄(0) = 0 and q̃
(1)
i = q

(1)
i = ∇Ω∗

∆
(

− 1
κ

γi

)
, ∀i ∈ [N ].

Then, we assume that Equation (B10) is satisfied up to step t ≥ 0. We are going
to show it is also satisfied for step t + 1.

First, using Equation (B9), the hypothesis at step t (leading to q̃
(t+1)
i = q

(t+1)
i ),

and the link between the subdifferential of Ω∆ and the gradient of Ψ∆, there exists a
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vector z(t+ 1
2 ) ∈ V ⊥

∆ such that

s̃(t+ 1
2 ) ∈ ∂Ω∆

( 1
N

N∑
i=1

q̃
(t+1)
i

)
,

∈ ∂Ω∆
( 1

N

N∑
i=1

q
(t+1)
i

)
,

= ∇Ψ∆
( 1

N

N∑
i=1

q
(t+1)
i

)
+ z(t+ 1

2 ).

From this and the hypothesis at step t leading to s̃(t) = s̄(t) + z(t), we have

s̃(t+1) = αs̃(t+ 1
2 ) + (1 − α)s̃(t),

= α∇Ψ∆
( 1

N

N∑
i=1

q
(t+1)
i

)
+ (1 − α)s̄(t)

︸ ︷︷ ︸
s̄(t+1)

+ αz(t+ 1
2 ) + (1 − α)z(t)︸ ︷︷ ︸
z(t+1)∈V ⊥

∆

.

We have therefore shown the property for the dual iterates. We now focus on the
primal updates. Using the mirror descent Equation (B8), for i ∈ [N ], we have

q
(t+2)
i = ∇Ω∗

∆

(
(1 − α)∇Ψ∆(q(t+1)

i︸ ︷︷ ︸
q̃

(t+1)
i

) + α
(

− 1
κ

γi + ∇Ψ∆
( 1

N

N∑
j=1

q
(t+1)
j

)))
,

= ∇Ω∗
∆

(
(1 − α)∇Ψ∆

(
∇Ω∗

∆
(
s̃(t) − 1

κ
γi

))
+ α

(
− 1

κ
γi + ∇Ψ∆

( 1
N

N∑
j=1

q
(t+1)
j

)))
,

= ∇Ω∗
∆

(
(1 − α)

(
s̃(t) − 1

κ
γi + z̃(t)︸︷︷︸

∈V ⊥
∆

)
+ α

(
− 1

κ
γi + ∇Ψ∆

( 1
N

N∑
j=1

q
(t+1)
j

)))
,

= ∇Ω∗
∆

(
α∇Ψ∆

( 1
N

N∑
j=1

q
(t+1)
j

)
+ (1 − α)s̄(t)

︸ ︷︷ ︸
s̄(t+1)

− 1
κ

γi

)
,

= ∇Ω∗
∆(s̃(t+1) − 1

κ
γi) = q̃

(t+2)
i .

In the computations above, we start with the assumption at step t and the definition
of the mirror descent update. We then use the definition of q̃

(t+1)
i , and the result on

the composition of the gradient of Ψ∆ and the gradient of Ω∗
∆ given in Proposition 8.

Then, from the third to the fourth line we use the fact that for any s ∈ RY and any
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vector z ∈ V ⊥
∆ , we have

∇Ω∗
∆(s + z) = argmax

q∈∆Y
⟨s + z|q⟩ − Ω∆(q) = argmax

q∈∆Y
⟨s|q⟩ − Ω∆(q) = ∇Ω∗

∆(s),

together with the assumption at step t. Last, we use the equality of the dual
iterates at step t + 1 up to a vector in V ⊥

∆ shown above. We eventually recognize the
definition of q̃

(t+2)
i . Therefore, we have shown by induction that the primal iterates of

mirror descent stated in Equation (B5) and the ones of our primal-dual algorithm in
Equation (B4) coincide, whihc concludes the proof.

C Convexity of the Jensen gap of a separable function
In this section, we show that the Jensen gap is convex for a separable regularization Ψ,
provided some regularity assumptions detailed below. This result applies, for instance,
to the squared and logistic losses that are commonly used in the Fenchel-Young learning
literature [3]. We plan to study the perturbation case in the future. Before proving the
main result of this section, let us first introduce a preliminary lemma.
Lemma 19. Let X be a convex subset of R and f a convex, positive, and twice
differentiable function over X. Then the following inequality holds for all x ∈ X:

f ′′(x)f(x) ≥ 2(f ′(x))2.

Proof. Let us define g : x 7→ − 1
x , with domain dom(g) = R++. Since g is concave

and increasing, (−f) is concave, the function g ◦ (−f) : x ∈ X 7→ 1
f(x) is concave.

Furthermore, g ◦ (−f) is clearly twice differentiable over X as a composition of two
twice differentiable functions with derivatives:

(g ◦ (−f))′(x) = − f ′(x)
(f(x))2

(g ◦ (−f))′′(x) = − f ′′(x)
(f(x))2 + 2(f ′(x))2

(f(x))3

The concavity of (g ◦ (−f)) implies that, for all x ∈ X:

(g ◦ (−f))′′(x) = − f ′′(x)
(f(x))2 + 2(f ′(x))2

(f(x))3 ≤ 0

Since f is strictly positive we can multiply the inequality by (f(x))3 and obtain

f ′′(x)f(x) ≥ 2(f ′(x))2,

which concludes the proof.

Proposition 20. (Convexity of the Jensen gap of a separable regularization) Suppose
that Ψ is separable by coordinate, i.e. Ψ(y) =

∑d
j=1 Ψj(y(j)). Additionally, suppose that

the functions Ψj are strictly convex, twice differentiable, and their second derivatives
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Ψ′′
j are convex and positive. Then the function F (y) =

∑N
i=1 Ψ(yi) − nΨ(ȳ), where

ȳ = 1
N

∑N
i=1 yi is convex.

Proof. First, observe that, since Ψ is separable by coordinate, we can write

F (y) =
d∑

j=1

(
N∑

i=1
Ψj(yi(j)) − nΨj(ȳ(j))

)
,

where yi(j) is the jth coordinate of vector yi. F is a sum of d terms, each depending
only on the jth coordinates of vectors (yi)1≤i≤N , hence we can restrict the proof to
the unidimensional case d = 1 and the general convexity result follows.

We compute the gradients of F:

∇yiF = Ψ′(yi) − Ψ′(ȳ)

∇yi∇yk
F =

{
Ψ′′(yi) − 1

N Ψ′′(ȳ) if i = k

− 1
N Ψ′′(ȳ) if i ̸= k

The Hessian matrix of F is defined as

HF (y) = IN (Ψ′′(y1), . . . , Ψ′′(yN ))⊤ − 1
N

Ψ′′(ȳ) · JN

where IN ∈ RN×N is the identity matrix and JN ∈ RN×N the square matrix whose
entries are all ones. In this case, F is convex if, for all x ∈ RN and y ∈ dom(Ψ)N , the
following inequality holds.

x⊤HF (y)x =
N∑

i=1
x2

i Ψ′′(yi) − 1
N

(
N∑

i=1
xi

)2

Ψ′′(ȳ) ≥ 0

We observe that this expression is exactly the Jensen gap for the function h defined
as:

h(x, y) : (x, y) 7→ x2Ψ′′(y)
We will now prove that h is convex by computing its Hessian matrix.

Jh(x, y) =
(

2xΨ′′(y), x2Ψ(3)(y)
)

Hh(x, y) =
[

2Ψ′′(y) 2xΨ(3)(y)
2xΨ(3)(y) x2Ψ(4)(y)

]
According to Silvester’s criterion, Hh(x, y) is semi-definite positive if both 2Ψ′′(y) ≥ 0
and det

(
Hh(x, y)

)
≥ 0. The first condition is verified since Ψ is convex, and the

determinant of Hh(x, y) can be computed as follows:

det
(
Hh(x, y)

)
= 2x2Ψ′′(y)Ψ(4)(y)−4x2(Ψ(3)(y))2 = 2x2

(
Ψ′′(y)Ψ(4)(y) − 2(Ψ(3)(y))2

)
By the application of Lemma 19, we obtain that det(Hh(x, y)) ≥ 0. Hence h is

convex, and its Jensen gap is non-negative, which concludes the proof.
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D Proof of the bound on the surrogate error
In this appendix, we provide a formal proof of Theorem 6 on the surrogate error. We
place ourselves in the setting of (non-contextual) stochastic optimization. We therefore
have no context, but a collection of noise samples (ξi)i∈[N ]. Let us first recall the
theorem.
Theorem 21. Let θ ∈ Rd be a vector, and RN (θ) := R∆,N

(
(Y ⊤θ)i∈[N ]

)
be the

empirical risk in the stochastic optimization setting. Provided that Ω∆ is L-strongly
convex, which means ∇Ω∗

∆ is 1
L -Lipschitz-continuous with respect to || · ||, the absolute

difference between the empirical risk and surrogate is bounded as

|SΩ∆,N (θ) − RN (θ)| ≤ 3
2NLκ

N∑
i=1

||γi||2. (D11)

From this inequality, we deduce a bound on the non-optimality of the solution to the
surrogate problem. Let θS ∈ argminθ SΩ∆,N (θ) and θR ∈ argminθ RN (θ), provided that
Ω∆ is L-strongly convex, which means ∇Ω∗

∆ is 1
L -Lipschitz-continuous with respect to

|| · ||,

RN (θS) − RN (θR) ≤ 3
LκN

N∑
i=1

||γi||2. (D12)

Proof. We first give an explicit expression for the partial minimum SΩ∆,N . Then, we
bound its absolute difference with the empirical risk RN . Last, we deduce the bound
in Equation (D12).

Let θ ∈ Rd,

SΩ∆,N (θ) = min
q⊗∈∆⊗

SΩ∆,N

(
(Y ⊤θ)i∈[N ], q⊗

)
,

= min
q⊗∈∆⊗

1
N

N∑
i=1

⟨γi|qi⟩ + κ[Ω∆(qi) + Ω∗
∆(Y ⊤θ) − ⟨Y ⊤θ|qi⟩],

= 1
N

N∑
i=1

min
qi∈∆Y

⟨γi|qi⟩ + κ[Ω∆(qi) + Ω∗
∆(Y ⊤θ) − ⟨Y ⊤θ|qi⟩],

= 1
N

N∑
i=1

⟨γi|∇Ω∗
∆
(
Y ⊤θ − 1

κ
γi

)
⟩ + κLΩ∆

(
Y ⊤θ; ∇Ω∗

∆
(
Y ⊤θ − 1

κ
γi

))
.

In the computations above, we use the definition of SΩ∆,N , we recognize N independent
minimization problems, and then we use the strict convexity of Ω∆ and Fenchel duality.
Let now θ ∈ Rd and i ∈ [N ], we recast the Fenchel-Young loss as

LΩ∆

(
Y ⊤θ; ∇Ω∗

∆
(
Y ⊤θ − 1

κ
γi

))
,

= Ω∗
∆
(
Y ⊤θ

)
+ Ω∆

(
∇Ω∗

∆
(
Y ⊤θ − 1

κ
γi

))
− ⟨Y ⊤θ|∇Ω∗

∆
(
Y ⊤θ − 1

κ
γi

)
⟩,
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= Ω∗
∆
(
Y ⊤θ

)
− Ω∗

∆
(
Y ⊤θ − 1

κ
γi

)
− ⟨ 1

κ
γi|∇Ω∗

∆
(
Y ⊤θ − 1

κ
γi

)
⟩,

=
∫ 1

0
⟨ 1
κ

γi|∇Ω∗
∆
(
Y ⊤θ − 1

κ
γi + u

κ
γi

)
⟩du − ⟨ 1

κ
γi|∇Ω∗

∆
(
Y ⊤θ − 1

κ
γi

)
⟩,

=
∫ 1

0

[
⟨ 1
κ

γi|∇Ω∗
∆
(
Y ⊤θ − 1

κ
γi + u

κ
γi

)
⟩ − ⟨ 1

κ
γi|∇Ω∗

∆
(
Y ⊤θ − 1

κ
γi

)
⟩
]
du,

where we have used the equality case of the Fenchel-Young inequality. We now get the
bound

LΩ∆

(
Y ⊤θ; ∇Ω∗

∆
(
Y ⊤θ − 1

κ
γi

))
,

≤ ||γi||
κ

∫ 1

0

∣∣∣∣∣∣∇Ω∗
∆
(
Y ⊤θ − 1

κ
γi + u

κ
γi

)
− ∇Ω∗

∆
(
Y ⊤θ − 1

κ
γi

)∣∣∣∣∣∣du,

≤ ||γi||
κ

∫ 1

0

1
L

u

κ
||γi||du = ||γi||2

2Lκ2 .

Above we use in turn Cauchy-Schwarz inequality, and the 1
L -Lipschitz-continuity of the

gradient ∇Ω∗
∆. Let now θ ∈ Rd, we derive a bound on the following absolute difference

|SΩ∆,N (θ) − RN (θ)| ≤ 1
N

N∑
i=1

∣∣⟨γi|∇Ω∗
∆
(
Y ⊤θ − 1

κ
γi

)
− ∇Ω∗

∆
(
Y ⊤θ

)
⟩
∣∣,

+ κ

N

N∑
i=1

LΩ∆

(
Y ⊤θ; ∇Ω∗

∆
(
Y ⊤θ − 1

κ
γi

))
,

≤ 1
N

N∑
i=1

||γi||
1

Lκ
||γi|| + κ

||γi||2

2Lκ2 ,

≤ 3
2NLκ

N∑
i=1

||γi||2.

The computations above are based on the triangular inequality, Cauchy-Schwarz
inequality, the 1

L -Lipschitz-continuity of the gradient ∇Ω∗
∆, and the bound on the

Fenchel-Young loss derived above.
Last, let θS ∈ argminθ SΩ∆,N (θ) and θR ∈ argminθ RN (θ),

RN (θS) − RN (θR) = RN (θS) − SΩ∆,N (θS)︸ ︷︷ ︸
≤ 3

2NLκ

∑N

i=1
||γi||2

+ SΩ∆,N (θS) − SΩ∆,N (θR)︸ ︷︷ ︸
≤0

+ SΩ∆,N (θR) − RN (θR)︸ ︷︷ ︸
≤ 3

2NLκ

∑N

i=1
||γi||2

,

≤ 3
NLκ

N∑
i=1

||γi||2.
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We have used twice the inequality above, and the definition of θS ∈ argminθ SΩ∆,N (θ),
which concludes the proof.

E Technical proofs on regularization functions
Proof of Proposition 7. Given the assumptions in the preamble of the proposition,

1. The function Ω belongs to the set of proper l.s.c. convex functions Γ0(Rd), thus for
any θ ∈ Rd, the supremum over the compact C of ⟨θ|·⟩−Ω(·) is finite and attained,
thus dom(Ω∗) = Rd. Recall that, as Ω is in Γ0(Rd), using the computations of
[19, Theorem 23.5], ∂Ω∗(θ) = argmaxy⟨θ|y⟩ − Ω(y). As Ω is strictly convex, the
argmax is reduced to a single point, and Ω∗ is differentiable over Rd. Therefore,
we have for (y, θ) ∈ (Rd)2:

θ ∈ ∂Ω(y) ⇐⇒ y ∈ ∂Ω∗(θ) ⇐⇒ y = ∇Ω∗(θ).

Therefore, for y ∈ rel int(C), we have ∇Ω∗(∂Ω(y)) = y.
2. Let y0 ∈ C and θ ∈ Rd be decomposed as θ = θV + θV ⊥ . Note that for all y ∈ C

we have ⟨θV ⊥ |y⟩ = ⟨θV ⊥ |y0⟩, since θV ⊥ is orthogonal to the direction of the affine
hull of C. Thus,

Ω∗(θ) = sup
y∈C

⟨θV + θV ⊥ |y⟩ − Ω(y) = ⟨θV ⊥ |y0⟩ + sup
y∈C

⟨θV |y⟩ − Ω(y),

which yields the result.
3. Let (y, y′) ∈ H2, θ ∈ ∂Ω(y), by definition of the subgradients, we have

Ω(y′) − Ω(y) ≥ ⟨θ|y′ − y⟩ = ⟨ΠV (θ)|y′ − y⟩,

since y′ − y belongs to V . Therefore we have shown that ΠV (θ) ∈ ∂(Ω|H)(y).
Conversely, let y ∈ H and θ ∈ V be an element of ∂(Ω|H)(y), for y′ ∈ Rd and

θ̃ ∈ V ⊥,
Ω(y′) ≥ Ω(y) + ⟨θ + θ̃|y′ − y⟩,

since either y′ /∈ H and Ω(y′) = +∞, or y′ ∈ H and y′ − y ∈ V therefore
⟨θ̃|y′ − y⟩ = 0. We have shown the first equality in Equation (32).

Equation (33) comes from the fact that Ω|H is Legendre-type, thus differentiable,
and for y ∈ rel int(dom(Ω)), ∂(Ω|H)(y) = {∇(Ω|H)(y)}.

Proof of Proposition 8. Let ΠV be the linear orthogonal projection onto V . W.l.o.g.,
we consider the case H = V , which means the affine hull of the domain of Ω is actually
a vector subspace in Rd. Extending to the affine case involves a translation. We define
the following application:

Ψ : Rd → R

y 7→ Ω(ΠV (y)) + 1
2 ||y − ΠV (y)||22,
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where ΠV (y) is seen as an element of Rd here. When it is the input of the restriction
of Ω to V , we see it as an element of V . Notice that by definition, Ω = Ψ + IC . We are
going to prove that Ψ is a Legendre-type function. We first show that Ψ defined as
such is essentially smooth by checking the three properties of the definition.

1. Since dom(Ω) = C ⊂ V and ∥ · ∥2
2 is defined over Rd, the domain of Ψ is

dom(Ψ) = C ⊕ V ⊥, and int(dom(Ψ)) = rel int(C) ⊕ V ⊥, which is not empty. We
therefore have

C ⊂ cl
(

int(dom(Ψ))
)
, and int(dom(Ψ)) ∩ C ̸= ∅.

2. By composition with linear projections and sum, Ψ is differentiable over
int(dom(Ψ)). We denote by JΠV

the Jacobian of ΠV , that can be seen as the
canonical injection of V into Rd. Let now (y, h) ∈ int(dom(Ψ))×Rd be two vectors
such that y + h ∈ dom(Ψ),

Ψ(y + h) = Ω(ΠV (y + h)) + 1
2 ||y + h − ΠV (y + h)||22,

= Ω(ΠV (y) + ΠV (h)) + 1
2 ||y − ΠV (y) + h − ΠV (h)||22,

= Ω|V (ΠV (y)) + ⟨JΠV
∇(Ω|V )(ΠV (y))|ΠV (h)⟩ + o(||ΠV (h)||),

+ 1
2 ||y − ΠV (y)||22 + ⟨y − ΠV (y)|h − ΠV (h)⟩ + o(||h − ΠV (h)||),

= Ω(ΠV (y)) + ⟨JΠV
∇(Ω|V )(ΠV (y))|ΠV (h) + h − ΠV (h)⟩ + o(||h||),

+ 1
2 ||y − ΠV (y)||22 + ⟨y − ΠV (y)|h − ΠV (h) + ΠV (h)⟩ + o(||h||),

= Ψ(y) + ⟨JΠV
∇(Ω|V )(ΠV (y)) + y − ΠV (y)|h⟩ + o(||h||).

In the computations above we use the linearity of ΠV , the fact that Ω and Ω|V
coincide over V , that Ω|V is Legendre-type thus differentiable, and the orthogonal
sum Rd = V ⊕ V ⊥. Therefore, we have shown that the gradient of Ψ is given by:

∇Ψ(y) = JΠV︸︷︷︸
Canonical
injection
V →Rd

∇Ω|V (ΠV (y)) + y − ΠV (y).

3. The boundary of int(dom(Ψ)) is

bdry
(

int(dom(Ψ))
)

= cl
(

rel int(C)
)
\ rel int(C) ⊕ V ⊥.

Indeed, int(dom(Ψ)) = rel int(C) ⊕ V ⊥ is isomorphic to rel int(C) × V ⊥,
bdry(V ⊥) = ∅, cl(V ⊥) = V ⊥, and for two sets S1 and S2

bdry(S1 × S2) =
(

bdry(S1) × cl(S2)
)

∪
(

cl(S1) × bdry(S2)
)
,
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where the boundaries in the right-hand side above are computed with respect to
the topology corresponding to each set.

Let now µ be in bdry
(

int(dom(Ψ))
)
, and let (µi)i∈N be a sequence

in
(

int(dom(Ψ))
)N, such that

lim
i→+∞

µi = µ = ΠV (µ)︸ ︷︷ ︸
∈cl
(

rel int(C)
)

\ rel int(C)

+ µ − ΠV (µ)︸ ︷︷ ︸
∈V ⊥

.

Since ΠV is continuous,

lim
i→+∞

ΠV (µi)︸ ︷︷ ︸
∈rel int(C)

= ΠV (µ), and lim
i→+∞

µi − ΠV (µi)︸ ︷︷ ︸
∈V ⊥

= µ − ΠV (µ).

Now, using the fact that Ω|V is Legendre-type, the expression of ∇Ψ above, and
the reverse triangular inequality,

||∇Ψ(µi)|| = ||JΠV
∇(Ω|V )(ΠV (µi)) + µi − ΠV (µi)||,

≥
∣∣ ||JΠV

∇(Ω|V )(ΠV (µi))||︸ ︷︷ ︸
→+∞

− ||µi − ΠV (µi)||︸ ︷︷ ︸
→||µ−ΠV (µ)||

∣∣.
Therefore, we have shown that limi→+∞ ||∇Ψ(µi)|| = +∞.

Let us finally show that Ψ is strictly convex. We first remark that dom(Ψ) is convex
since both C and V ⊥ are. Let (y1, y2) be in (dom(Ψ))2, with y1 ̸= y2, and let t be in
(0, 1). To ease notations, we denote yV

i = ΠV (yi), and y⊥
i = yi − ΠV (yi),

Ψ(ty1 + (1 − t)y2) = Ω(tyV
1 + (1 − t)yV

2 ) + 1
2 ||ty⊥

1 + (1 − t)y⊥
2 ||22,

< tΩ(yV
1 ) + (1 − t)Ω(yV

2 ) + t
1
2∥y⊥

1 ∥2 + (1 − t)1
2∥y⊥

1 ∥2,

= tΨ(y1) + (1 − t)Ψ(y2).

The first line is by linearity of the orthogonal projection onto V . Further, as y1 ≠ y2
we have yV

1 ̸= yV
2 or y⊥

1 ̸= y⊥
2 , thus the strict convexity of Ω over C and of ∥ · ∥2

2 yields
the second line. We have therefore shown that Ψ is a Legendre-type function.

We now consider its Fenchel conjugate Ψ∗, and study its domain. Let θ ∈ Rd,
decomposed as θ = θV + θV ⊥ , where θV = ΠV (θ) and θV ⊥ = θ − θV ,

Ψ∗(θ) = sup
y∈Rd

{⟨θ|y⟩ − Ψ(y)}, (E13a)

= sup
y∈Rd

{
⟨θV |ΠV (y)⟩ − Ω(ΠV (y)) + ⟨θV ⊥ |y − ΠV (y)⟩ − 1

2 ||y − ΠV (y)||22
}

,

(E13b)
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= sup
yV ∈V,

y
V ⊥ ∈V ⊥

{
⟨θV |yV ⟩ − Ω(yV ) + ⟨θV ⊥ |yV ⊥⟩ − 1

2 ||yV ⊥ ||22
}

, (E13c)

= Ω∗(θV ) + 1
2 ||θV ⊥ ||22. (E13d)

Now, since Ω∗ has full domain using Proposition 7, we have dom(Ψ∗) = Rd.

We eventually show the property on the composition of the gradients of Ψ and
Ω∗. First, we highlight that by Proposition 7, Ω∗ is indeed differentiable over Rd.
Its gradient corresponds to the regularized prediction defined by Equation (29), and
belongs to the relative interior of the convex compact set C. Let θ ∈ Rd be a vector
decomposed as θ = θV + θV ⊥ , where θV = ΠV (θ) and θV ⊥ = θ − θV . Then we have

∇Ω∗(θ) = ∇Ω∗(θV ) = JΠV︸︷︷︸
Canonical
injection
V →Rd

∇Ω∗
|V (θV ).

Therefore, applying the gradient of Ψ leads to

∇Ψ
(
∇Ω∗(θ)

)
= ∇Ψ

(
JΠV

∇Ω∗
|V (θV )︸ ︷︷ ︸

∈rel int(C)

+ 0︸︷︷︸
∈V ⊥

)
,

= JΠV
∇Ω|V

(
∇Ω∗

|V (θV )
)

+ 0,

= θV = θ −θV ⊥︸ ︷︷ ︸
z∈V ⊥

.

In the computations above, we use the expression of the gradient of Ψ, and the
fact that the restriction Ω|V of Ω to V is a Legendre-type function with Fenchel
conjugate Ω∗

|V . Therefore, we have shown that there exists a vector z ∈ V ⊥ such that
∇Ψ

(
∇Ω∗(θ)

)
= θ + z.

Proof of Lemma 12. Let (s1, s2) ∈ (V∆)2, s1 ≠ s2 be two vectors. We are going to
show that

argmax
y∈Y

{s1(y) + εZ⊤y} ∩ argmax
y∈Y

{s2(y) + εZ⊤y} = ∅,

for Z almost everywhere with respect to the Lebesgue measure in an open ball in Rd.
Since Z follows a non-degenerate Gaussian measure, the result yields.

Suppose first that

argmax
y∈Y

s1(y) ∩ argmax
y∈Y

s2(y) = ∅.

Then, a ball centered on 0Rd with sufficiently small radius gives the result.
Let now y∗ be a common maximizer of s1 and s2. Since s1 and s2 are elements of

V∆ = span(1)⊥, and they are distinct, they are not equal up to a constant. We can
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thus fix a ȳ ∈ Y such that

s1(ȳ) − s1(y∗) ̸= s2(ȳ) − s2(y∗).

In particular, it implies that ȳ does not belong to the intersection of the argmax,

ȳ /∈ argmax
y∈Y

s1(y) ∩ argmax
y∈Y

s2(y).

Let Z̄ be in the relative interior of the normal cone of conv(Y) at ȳ, such that the
function g defined as

g : y 7→ εZ̄⊤y,

is injective over Y. It is possible since the normal cone is full dimensional, and the
union of the hyperplanes where two dot products are equal is not full dimensional.
Then, for λ ∈ R+ sufficiently large,

argmax
y∈Y

s1(y) + ελZ̄⊤y = argmax
y∈Y

s2(y) + ελZ̄⊤y = {ȳ}.

For i ∈ {1, 2}, let us define Fi as the single variable function

Fi : λ ∈ R 7→ max
y∈Y

(
si(y) + ελZ̄⊤y

)
− si(y∗).

Note that if there exists λ∗ ∈ R such that argmaxy∈Y
(
si(y)+λ∗εZ̄⊤y

)
for i ∈ {1, 2}

are disjoint singletons, then considering a small enough open ball around the vector
λ∗Z̄ gives the result. We now show that such a λ∗ exists.

Since Y is finite, for i ∈ {1, 2}, Fi is a maximum of a finite number of affine functions
in λ, it is therefore a piecewise affine function. Since g is injective, for i ∈ {1, 2}, there
exists a collection of ki +1 real numbers, ki ∈ N, ki > 1, denoted as 0 = λi

0 < . . . < λi
ki

and a unique collection y∗ = yi
1, . . . , yi

ki
= ȳ of two-by-two distinct vectors such that

Fi(λ) = si(yi
j) + ελZ̄⊤yi

j − si(y∗), ∀λ ∈ [λi
j−1, λi

j ].

Furthermore, the fact that g is injective implies that yi
j is the unique maximizer

over Y of y 7→ si(y) + ελZ̄⊤y for λ ∈]λi
j−1, λi

j [. If the collections for i ∈ {1, 2} are not
identical, the proof is finished. By contradiction, we assume that the two collections
are identical and denote by 0 = λ0 < . . . < λk and y∗ = y1, . . . , yk = ȳ the common
collections.

Let j̃ be the smallest j′ ∈ [k] such that s1(yj′) − s1(y∗) ̸= s2(yj′) − s2(y∗). It exists
since the inequality holds for ȳ. Without loss of generality, we can assume from now
on that s1(yj̃) − s1(y∗) > s2(yj̃) − s2(y∗). For i ∈ {1, 2}, we define λ̃i as:

λ̃i := min{λ | yj̃ ∈ argmax
y∈Y

(
si(y) + ελZ̄⊤y

)
}.

We eventually get a contradiction by proving λ̃1 < λ̃2 with the following inequality.

s2(yj̃) − s2(y∗) + λ̃1g(yj), (E14a)
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< s1(yj̃) − s1(y∗) + λ̃1g(yj), (hypothesis right above), (E14b)
= s1(yj̃−1) − s1(y∗) + λ̃1g(yj̃−1), (Both yj̃ and yj̃−1 are optimal at the junction),

(E14c)
= s2(yj̃−1) − s2(y∗) + λ̃1g(yj̃−1), (by definition of j̃). (E14d)

Hence, for λ = λ̃1 + η with η > 0 sufficiently small, yj̃ is the unique argmax of
s1(y) + λg(y) and yj̃−1 ̸= yj̃ is the unique argmax of s2(y) + λg(y).

Proof of Proposition 1. To derive Equation (19b) remark the following. First, SΩ∆,N is
defined as the sum of SΩ∆ , and since w̄(t) is fixed, we obtain N independent problems.
Now, using the expression of SΩ∆ , we see that q

(t+1)
i belongs to the minimizers of

Ω∆Y(xi)(·) − ⟨Y (xi)⊤φw̄(t)(xi) − 1
κ

γi|·⟩.

Using Fenchel duality, we recognize ∇Ω∗
∆Y(xi)

(
Y (xi)⊤φw̄(t)(xi) − 1

κ γi

)
.

For the dual update in Equation (19c), using the expression of SΩ∆ , and omitting
the term that does not depend on w, we can first recast Equation (18b) as

w̄(t+1) ∈ argmin
w∈W

1
N

N∑
i=1

LΩ∆(xi)

(
Y (xi)⊤φw(xi); q

(t+1)
i

)
.

Now, we leverage the computations of Section 3.2. In particular, based on the
regularization function Ω∆Y(x) on distributions in ∆Y(x), we define a regularization
function ΩC(x) on the moment space C(x) = conv(Y(x)) as in Equation (20). We then
use Proposition 9, more precisely Points 1-2, to get Equation (19c).

Proof of Proposition 3. For the primal update in Equation (22a), we can reformulate
Equation (19b) in this perturbation setting

µ
(t+1)
i = Y (xi)q(t+1)

i = Y (xi)∇Fε,∆(xi)
(
Y (xi)⊤φw̄(t)(xi) − 1

κ
γi

)
,

= Y (xi)EZ
[

argmax
qi∈∆Y(xi)

⟨Y (xi)⊤φw̄(t)(xi) − 1
κ

γi + εY (xi)⊤Z|qi⟩
]
,

= EZ
[
Y (xi) argmin

qi∈∆Y(xi)
⟨
( 1

κ
c(xi, y, ξi) − (φw̄(t)(xi) + εZ)⊤y

)
y∈Y(xi)|qi⟩

]
,

= EZ
[

argmin
yi∈Y(xi)

c(xi, yi, ξi) − κ(φw̄(t)(xi) + εZ)⊤yi

]
.

In the computations above, we use Proposition 11 for the expression of the gradient of
the function Fε,∆(xi), and the fact that the minimum of the linear optimization problem
in qi is attained (almost surely) at a vertex of the simplex ∆Y(xi), corresponding to
a Dirac on a point yi ∈ Y(xi). We see that the two constants κ and ε play similar
roles in this setting. Up to a re-normalization of the ML predictor φw, we keep the
hyper-parameter ε to tune the regularization scale.
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For the dual update in Equation (22b), we simply use the expression of the
Fenchel-Young loss in the perturbation setting, and omit the terms that do not depend
on w.
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